Low-Power Programmable Logic: A Vendor’s Perspective

Ted Speers
Head of Product Architecture and Planning
Actel Fellow
Performance vs. Differentiators

As product performance exceeds requirements, differentiators are rewarded in the market place.
Twist to the Dilemma?

If Batteries Followed Moore’s Law

Mobile Customer Requirements?

Source: Avicenne
FPGAs Taking Market Share from ASICs

Source: iSuppli
An Unwelcome Challenger: 32Bit MCU

Source: iSuppli
Where’s the Money?

Semiconductor Elasticity

\[y = 49.253x^{0.2947} \]

\[y = 49253x^{-0.7053} \]

Source: iSuppli

Actel Corporation © Confidential 2009
Still Champion: ASSPs

Source: iSuppli
Actel’s Investment in Low Power

TECHNOLOGY

SILICON

TOOLS
Benefits of Flash Technology for FPGAs

- Non-volatile (no boot PROM)
- Reprogrammable
- Low static power:
 - <50\(\mu\)W at 1M Gates ... several orders of magnitude less than SRAM competition
 - <5\(\mu\)W for smallest device
- Retains configuration with zero power
- Design security
- Saves time and energy to load configuration at power up
- Immune to firm errors
 - Good for high-reliability and space applications
- Fusion mixed-signal FPGA with on-chip embedded flash memory
 - Ideal soft processor solution (8051, ARM CortexM1)
- Smallest packages in the Industry (3mm\(^2\))
Where Actel’s Low Power Solutions Fit Today

Power Comparison @ 1M Gates - 100% Active

- AGL-V2
- AGL-V5
- Cyc3
- SRAM

Static is the Y Intercept
Dynamic is the slope
Portable Market

Volume

Features

Consumer

Industrial, Medical

Military, Automotive
Example: Cellphone/MP3 Player Audio Buffer

Customer Requirement:
“Play as much music on the phone as an iPod can between charges.

FPGA solution increased time from 13 hours to 50 hours
Application Example: Telematics

Customer Requirement: “The car needs to be able to be parked at an airport for 1 month and not drain the battery”
Customer Requirement:
“The field device must get all its power from the 4mA HART modem current loop.”
Application Example: Smartphone Display

Input Data

H: 800
V: 480

LCD I/F: Rotate

FPGA

Output Data

V: 800
H: 480

Image 90°
Clockwise Rotate
800x480 -> 480x800

< LCD >
Interfaces: MIPI

MIPI D-PHY

www.mipi.org
Displays

<table>
<thead>
<tr>
<th>Computer Graphics</th>
<th>Standard</th>
<th>Resolution X</th>
<th>Resolution Y</th>
<th>Aspect Ratio</th>
<th>Pixels</th>
<th>Depth</th>
<th>FPS</th>
<th>Gbps</th>
<th>Data Lanes</th>
</tr>
</thead>
<tbody>
<tr>
<td>QVGA</td>
<td>320</td>
<td>240</td>
<td>4:3</td>
<td>76,800</td>
<td>24</td>
<td>30</td>
<td></td>
<td>0.06</td>
<td>1</td>
</tr>
<tr>
<td>WQVGA</td>
<td>432</td>
<td>240</td>
<td>5:3</td>
<td>103,680</td>
<td>24</td>
<td>30</td>
<td></td>
<td>0.07</td>
<td>1</td>
</tr>
<tr>
<td>HVGA</td>
<td>480</td>
<td>320</td>
<td>3:2</td>
<td>153,600</td>
<td>24</td>
<td>30</td>
<td></td>
<td>0.11</td>
<td>1</td>
</tr>
<tr>
<td>VGA</td>
<td>640</td>
<td>480</td>
<td>4:3</td>
<td>307,200</td>
<td>24</td>
<td>30</td>
<td></td>
<td>0.22</td>
<td>1</td>
</tr>
<tr>
<td>WGA</td>
<td>800</td>
<td>480</td>
<td>5:3</td>
<td>384,000</td>
<td>24</td>
<td>30</td>
<td></td>
<td>0.28</td>
<td>1</td>
</tr>
<tr>
<td>SVGA</td>
<td>800</td>
<td>600</td>
<td>4:3</td>
<td>480,000</td>
<td>24</td>
<td>30</td>
<td></td>
<td>0.35</td>
<td>1</td>
</tr>
<tr>
<td>XGA</td>
<td>1024</td>
<td>768</td>
<td>4:3</td>
<td>786,432</td>
<td>24</td>
<td>30</td>
<td></td>
<td>0.57</td>
<td>1</td>
</tr>
<tr>
<td>XGA+</td>
<td>1152</td>
<td>864</td>
<td>4:3</td>
<td>995,328</td>
<td>24</td>
<td>30</td>
<td></td>
<td>0.72</td>
<td>1</td>
</tr>
<tr>
<td>WXGA-1</td>
<td>1280</td>
<td>800</td>
<td>16:10</td>
<td>1,024,000</td>
<td>24</td>
<td>30</td>
<td></td>
<td>0.74</td>
<td>1</td>
</tr>
<tr>
<td>SXGA</td>
<td>1280</td>
<td>1024</td>
<td>5:4</td>
<td>1,310,720</td>
<td>24</td>
<td>30</td>
<td></td>
<td>0.94</td>
<td>2</td>
</tr>
<tr>
<td>WXGA-2</td>
<td>1366</td>
<td>768</td>
<td>16:9</td>
<td>1,049,088</td>
<td>24</td>
<td>30</td>
<td></td>
<td>0.76</td>
<td>1</td>
</tr>
<tr>
<td>WXGA+</td>
<td>1440</td>
<td>900</td>
<td>16:10</td>
<td>1,296,000</td>
<td>24</td>
<td>30</td>
<td></td>
<td>0.93</td>
<td>2</td>
</tr>
<tr>
<td>SXGA+</td>
<td>1400</td>
<td>1050</td>
<td>4:3</td>
<td>1,470,000</td>
<td>24</td>
<td>30</td>
<td></td>
<td>1.06</td>
<td>2</td>
</tr>
<tr>
<td>WSXGA</td>
<td>1600</td>
<td>1024</td>
<td>25:16</td>
<td>1,638,400</td>
<td>24</td>
<td>30</td>
<td></td>
<td>1.18</td>
<td>2</td>
</tr>
<tr>
<td>WSXGA+</td>
<td>1680</td>
<td>1050</td>
<td>16:10</td>
<td>1,764,000</td>
<td>24</td>
<td>30</td>
<td></td>
<td>1.27</td>
<td>2</td>
</tr>
<tr>
<td>UXGA</td>
<td>1600</td>
<td>1200</td>
<td>4:3</td>
<td>1,920,000</td>
<td>24</td>
<td>30</td>
<td></td>
<td>1.38</td>
<td>2</td>
</tr>
<tr>
<td>WUXGA</td>
<td>1920</td>
<td>1200</td>
<td>16:10</td>
<td>2,304,000</td>
<td>24</td>
<td>30</td>
<td></td>
<td>1.66</td>
<td>2</td>
</tr>
</tbody>
</table>
Phone of the Future:

Modem → Application Processor → Programmable Device
Points of Influence

Choice of solution can lead to >10X inefficiencies.

Implementation Tools can save ~40%

Actel Corporation © Confidential 2009
Speers’ Law 2.0

% of Hardware Designers (EDA Revenue)

% of FPGA Sales Generated

Hardware Design IQ
What Kind of Tools & Hardware Does this Person Need?

[Diagram showing the relationship between Software IQ and Hardware Design IQ with a dotted line intersecting at Peak Low Power FPGA Sales?]
Some Thoughts

Tools:
- Anything that helps the system architect know the ideal result.
- Easy to use library functions
 - Require zero knowledge about hardware
 - Pre-wrapped in an API

Hardware:
- Convert excess performance to ease of use
 - FPGA architected so that a hardware library element will work in any context
- From Actel’s perspective, work on lowering dynamic power.
Summary

- Market forces pointing towards a significant role for programmable logic in low power applications.
- Attributes of Actel’s flash based FPGA make it attractive for low power applications.
- We are winning in applications where FPGAs have not played before.
- A lesson from our first salvo into this market is that the target customer is not necessarily a typical FPGA customer and therefore may require different tools and capabilities in order to be successful.