
 1

Flexible Routing Architecture Generation 
for Domain-Specific Reconfigurable Subsystems 

Katherine Compton 

Northwestern University 
Evanston, IL   USA 

kati@ece.northwestern.edu 
 

 
Akshay Sharma, Shawn Phillips, Scott Hauck 

University of Washington 
Seattle, WA   USA 

{akshay, phillips, hauck}@ee.washington.edu 
 

Abstract 

Reconfigurable hardware is ideal for use in Systems-on-a-Chip, as it 
provides hardware speeds as well as the benefits of post-fabrication 
modification.  However, not all applications are equally suited to any one 
reconfigurable architecture.  Therefore, the Totem Project focuses on the 
automatic generation of customized reconfigurable hardware.  This paper 
details our first attempts at the design of algorithms for automatic generation 
of customized flexible routing architectures.  We show that these algorithms 
provide results with a low area overhead compared to the custom-designed 
RaPiD routing architecture, as well as the flexibility needed to handle some 
application modifications. 

Introduction 

Reconfigurable hardware shows great potential for use in systems-on-a-chip 
(SoCs), as it provides speeds similar to hardware execution, but maintains a level of 
flexibility not available with more traditional custom circuitry.  This flexibility is the 
key to allowing for both hardware reuse and post-fabrication modification. 

A widely available form of reconfigurable hardware is the field-programmable gate 
array (FPGA), and the structures within an SoC could be patterned after these designs.  
However, because of their highly flexible nature, FPGAs can incur significant area 
and speed penalties.  If the SoC itself will be custom-fabricated, this presents the 
opportunity for customization of the reconfigurable hardware based on characteristics 
of the target application domain.  Domain-specific reconfigurable hardware provides 



 2

only the amount of reconfigurability needed by the applications, which leads to 
reduced area and increased performance compared to a generic FPGA-style solution. 

Manual design of a new reconfigurable architecture for each new application set 
would be disadvantageous in terms of design time and expertise required.  Instead, we 
focus on the automatic creation of customized reconfigurable architectures, including 
high-level design, VLSI layout [1], and custom place and route tools creation [2].  
This paper focuses on the Totem Project's work towards the automatic creation of 
reconfigurable architectures that are flexible enough to handle small changes in the 
application circuits, such as upgrades or bug-fixes, or perhaps even the addition of 
different circuits entirely. 

Background 

Our current architecture generator creates designs in the style of the RaPiD 
architecture [3][4][5]. The two primary motivations for choosing the RaPiD system as 
a starting point for our research, apart from its successes in DSP applications, are that 
it is a one-dimensional architecture, and because a compiler for this system is already 
in place.  The one-dimensional nature of RaPiD simplifies our task significantly, 
though in future efforts we will extend our techniques to 2D architectures.  Also, as is 
the case for the RaPiD architecture, a 1D design is quite suited to the datapath-style 
computations that we are initially targeting.  The existing compiler is also important 
because this provides us with a method to generate benchmark application circuits. 

RaPiD (shown in Fig. 1) is composed of coarse-grained word-sized computation 
units such as ALUs, Multipliers, and RAMs, arranged along a 1D axis.  Routing is in 
the form of word-sized busses arranged in tracks running parallel to the axis.  Each 
component contains multiplexers on each of its inputs which choose between the 
signals of each routing track, as well as demultiplexers on each of the outputs that 
allow the unit to directly output to any of the routing tracks. 

G
PR

R
A

M

R
A

M

G
PR

M
U

LT

G
PR

A
LU

A
LU

G
PR

G
PR

R
A

M

A
LU

G
PR

G
PR

R
A

M

R
A

M

G
PR

M
U

LT

G
PR

A
LU

A
LU

G
PR

G
PR

R
A

M

A
LU

G
PR

 
Fig. 1. A single cell from the RaPiD architecture [4][5].  The full architecture is composed of 
16 of these cells tiled end-to-end. 

RaPiD has proven itself to be a very good architecture for digital signal processing 
type applications.  However, this architecture was manually designed, and does not 
have enough routing capability for a number of the benchmarks we are using.  
Furthermore, RaPiD was designed to be suitable for executing a wide variety of 



 3

circuits.  Our goal is to customize an architecture for a given application set, with 
some extra resources if desired for future flexibility, and to be able to generate this 
architecture automatically. 

Routing Architecture Generation 

For this paper we concentrate primarily on the generation of configurable routing 
architectures.  We use a slightly modified version of our previous algorithms for 
generating logic structures along a 1D axis [6].  The routing architectures are 
generated using a number of heuristics to generate solutions targeting different 
combinations of area and flexibility goals. 

Each of our routing generation algorithms shares a couple of key concepts.  The 
first is the difference between local and distance routing tracks.  Local tracks are used 
for short connections.  The top five tracks of RaPiD are of this type.  The length of a 
wire in a track can be determined by finding the indices of the furthest units a wire 
can reach, and subtracting the left index from the right index.  A special local track, 
which is the topmost shown in Fig. 1, is a track containing length 0 “feedback” wires, 
that only route from a unit's outputs to the unit's inputs.  Distance routing tracks 
include the added flexibility that longer wires can be created from shorter ones 
through the bus connectors.  Each bus connector can be independently programmed.  
This allows a great deal of routing flexibility, but adds a delay as a signal passes 
through the bus connector, and adds an area penalty.   The lower eight tracks of 
RaPiD are of this type. 

Another important idea is the "offset" of the track.  This offset determines the left-
right shifting of the track once its wire length has been determined.  Fig. 2 left 
demonstrates a type of routing architecture where all tracks have the same offset 
value.  The routing choices available to a signal can be very dissimilar (and 
potentially undesirable) depending on the location of the signal's source and sink 
components.  On the other hand, by carefully choosing our offset values for the 
tracks, we can achieve an architecture closer in design to the one shown in Fig. 2 
right.  This “distributed” type of routing architecture will provide more flexibility in 
routing, as it provides a variety of routing choices for signals connecting to each 
component. 



 4

            
Fig. 2. An extreme example of a non-distributed routing architecture (left).  A distributed 
routing architecture (right). 

The cross-section of signals is a concept we use to measure the performance of our 
algorithms.  This cross-section is calculated by finding the maximum cross-section at 
any component location for each individual netlist, then finding the maximum across 
netlists.  We use this value as a lower bound on the number of tracks needed to 
implement the source netlists on the architecture generated for them.  This lower 
bound is an improbable solution due to the very high number of bus connectors that 
would be required in order to use this few tracks.  Each of our algorithms also 
repeatedly determines the cross-section of the signals that cannot yet be routed on the 
architecture being generated.  This computation is used as one of the indicators of 
whether or not a particular track is providing any "benefit" to the architecture.  We try 
to add tracks that will decrease the unroutable signal cross-section value. 

In order to determine the cross-section of the signals that cannot be routed, we 
need to actually perform a routing operation.  Because this is a frequent operation 
performed within loops, we needed a very fast router (faster than the higher-quality 
router used for "final" benchmarking) which provides reasonable results.  We 
therefore use a fast greedy heuristic to perform routing.  Like a left-edge algorithm, 
we consider signals by increasing left edge.  However, rather than routing each signal 
to the leftmost unassigned wire that can implement it, we also consider how closely 
the span of the signal matches the span of the wire.  Each time an initial wire/signal 
pair is considered, we examine the other signals which could also be routed onto the 
wire, and choose the one which is the closest "fit".  We mark the chosen signal as 
"routed", and if we did not choose our original signal, we reconsider that signal on the 
next iteration.  For the routing operation, each netlist is considered a separate 
problem. 

The next few sections describe our three different routing architecture generation 
algorithms.  The first, Greedy Histogram, does not attempt to generate distributed 
routing structure.  The remaining two algorithms, Add Max Once and Add Min Loop, 
focus on generating a more regular architecture, where these breaks and spaces are 
very evenly distributed.  The details of each algorithm are presented below, followed 
by a comparison of the results obtained by each. 

Greedy Histogram 

This algorithm attempts to keep the overall number of tracks low, while 
encouraging the use of local tracks over distance tracks in order to avoid introducing a 



 5

large number of bus connectors.  Each track has a specific type and wire length used 
for all segments within that track.  However, we make no restrictions as to what offset 
should be used.  This creates a potentially non-distributed routing architecture which 
may not have uniform connectivity and thus may not be as flexible as a more regular 
interconnect architecture. 

In this algorithm, tracks are added one at a time within an infinite loop.  The loop 
is broken when all of the netlists can be fully routed onto the architecture using the 
routing algorithm we discussed previously.  The algorithm chooses the wire length for 
a "new" track by looking at largest value in the histogram of the unrouted signal 
lengths.  The actual track creation method depends in part upon the wire length 
chosen.  For lengths smaller than 8, we choose a local routing track to avoid excessive 
use of bus connectors, and check all possible offsets (from 0 to length-1) to find the 
best one for that wire length.  Otherwise we create a distance track, and we check all 
wire lengths from 8 to the chosen length, and all offsets for each length to find the 
track that reduces the histogram the most at the length we chose. 

Regular Routing Algorithms 

The next two algorithms generate a distributed routing architecture, where not only 
are the breaks or connectors evenly distributed within a track, but also across tracks.  
In other words, we choose our track offsets so as to provide a somewhat consistent 
level of connectivity regardless of location in the architecture.  Fig. 2 right shows an 
example of this type of routing architecture.  In order to make the complex task of 
even break/connector distribution easier to approximate, we have restricted wire 
lengths to powers of two, where the track possibilities are now local tracks of length 0 
(feedback), 2, and 4, and distance tracks of length 8 and 16.  Because the Greedy 
Histogram method infrequently chose wire lengths greater than 16, we did not include 
options for lengths 32 or higher. 

Add Max Once 

This algorithm is fairly simple in organization, much more than the Greedy 
Histogram algorithm.  We start from the shortest track length and go to the longest 
track length, seeing how many tracks of each type we can add while still improving 
the cross-section of unroutable signals.  In other words, we add tracks of the given 
type until no further cross-section reductions are possible due to the creation 
additional tracks of the type. 

Add Min Loop 

The previous algorithm tends to weight towards the use of distance routing tracks 
because it only considers each wire length and type combination once.  It is possible, 
however, that once a distance track is added, using additional local tracks will in fact 
once again reduce the unroutable signal cross-section.  Therefore, we have created the 



 6

Add Min Loop algorithm in an effort to more accurately generate tracks with local 
wires. 

This algorithm iteratively adds a small number of tracks to the overall routing 
architecture, until full routeability can be achieved, with only one type of track added 
per iteration.  Within the loop, we repeatedly attempt to add tracks in the following 
order:  length 0 local tracks, length 2 local tracks, length 4 local tracks, length 16 
distance tracks, and length 8 distance tracks.  In the case of the local routing tracks, 
we attempt to add as many tracks as the length of the wires in the track (providing 
potentially the full range of offsets for that particular track type).  For distance routing 
tracks, which we consider to be much more expensive, we only attempt to add a 
single track of each type.  We only keep the tracks we attempt to add if it causes a 
reduction in the cross-section of unroutable signals.  If we keep any tracks, we 
immediately remove any track containing longer wires than our new track(s).  This is 
done because that once the shorter wire length track is added, the architecture may not 
need as many longer-type tracks as was earlier computed.  After we modify the counts 
accordingly, we return to the top of the loop. 

Algorithm Comparison 

Both area and flexibility are important when comparing reconfigurable 
architectures, as a very small architecture with little flexibility may not meet the needs 
of the user.  Conversely, an architecture that is overly flexible may be able to 
implement any circuit required, yet the area cost may be prohibitive.  In this paper we 
compare our three different routing generation algorithms first on an area basis, and 
second on the flexibility of the resulting architectures. 

We are using a number of benchmarks from which we choose our various 
application "sets".  These benchmarks have been compiled using the RaPiD compiler 
[3] into a coarse netlist format, which our tools then interpret and use.  The 
benchmark sets are:  

 

• Radar – used to observe the atmosphere using FM signals 
• Digital Camera – a set of three operations needed for a digital camera 
• OFDM – part of a MC-CDMA receiver application that uses a smart antenna 
• Image Processing Library – a minimal image processing library 
• All DCT/FFT – two different 16-point FFTs and a DCT 
• All FIR –six different FIR filters, two of which time-multiplex use of multipliers 
• All Matrix Multiply – five different matrix multipliers 
• All Sort – two 1D sorting netlists and two 2D sorting netlists 

Area 

In order to determine area numbers, we found the areas of the components as 
provided by the RaPiD group.  All layouts were done in a TSMC .25µm process.  To 



 7

compare to a RaPiD implementation, we assume that RaPiD is easily tileable to any 
number of cells, but that the routing architecture and logic within each cell is fixed.  
This represents the obvious hard-macro approach to SoC reconfigurable subsystem 
design.  For each application group, we found the minimum number of RaPiD cells 
that fit all of the netlists using our initial place and route tool [2].  The individual area 
results of the comparisons are shown in Fig. 3.  If a benchmark set cannot be 
implemented using tileable RaPiD cells, a “*” appears in the results table.  In these 
cases, the RaPiD routing architecture is simply not large or flexible enough for that 
particular application set. 

For each application set, we show the track count generated by each of the three 
algorithms, and compare to the lower bound.  Note that the lower bound is different 
for Greedy Histogram, since the logic layout is not constrained to be “distributed”.  
The chart then indicates how far from the lower bound each algorithm's routing 
architecture is, where the lower bound is the maximum of the cross-section of all 
signals in each netlist.  As mentioned earlier, we consider this lower bound to be 
unrealistic.  Finally, the total area is given for the architectures, including for the 
required RaPiD implementation, and each method is compared to the RaPiD 
implementation for the same application group.  These results are summarized in Fig. 
4. 

The average fraction of the RaPiD solution was .66 for the Greedy Histogram, .69 
for Add Max Once, and .70 for Add Min Loop.  This is not even taking into account 
the benchmark sets that could not be implemented on RaPiD as the architecture is 
now.  The majority of this benefit is due to including only the necessary logic for each 
benchmark set.  This is where customization can greatly affect overall area results.  
As these values indicate, the extra routing area overhead introduced by using 
automatic routing generation (instead of hand-design as is the case with RaPiD) did 
not overwhelm the area benefits of removing unnecessary logic.  For the cases where 
we were able to compare to a RaPiD implementation, we averaged a factor of nearly 
2.5 in logic area reduction.  Meanwhile, we only increased routing area by an average 
of 1.37 times for Greedy Histogram, 1.53 times for Add Max Once, and 1.57 times for 
Add Min Loop. 

 
 



 8

Application 
Group Method Bound

Factor of 
Bound

Total 
Area

Factor of 
RaPiD

GH 7 8 15 10 1.50 6879160 0.44
AMO 1 18 19 13 1.46 10637760 0.68
AML 5 14 19 13 1.46 10066770 0.64

RaPiD 5 10 15 15647260 1.00
GH 9 17 26 14 1.86 26414350 *

AMO 2 23 25 17 1.47 30348850 *
AML 11 20 31 17 1.82 33974950 *

RaPiD 5 10 15 * *
GH 10 23 33 19 1.74 94797900 *

AMO 1 27 28 22 1.27 88205800 *
AML 6 25 31 22 1.41 86888800 *

RaPiD 5 10 15 * *
GH 7 12 19 11 1.73 12085300 *

AMO 2 25 27 11 2.45 12974970 *
AML 5 14 19 11 1.73 12789070 *

RaPiD 5 10 15 * *
GH 8 17 25 12 2.08 17737070 0.76

AMO 3 19 22 14 1.57 15084150 0.64
AML 6 17 23 14 1.64 14629560 0.62

RaPiD 5 10 15 23475660 1.00
GH 9 11 20 10 2.00 14106060 0.68

AMO 3 12 15 9 1.67 8991460 0.43
AML 4 11 15 9 1.67 8857280 0.42

RaPiD 5 10 15 20857340 1.00
GH 10 7 17 9 1.89 7287170 0.70

AMO 4 15 19 10 1.90 8127370 0.78
AML 8 12 20 10 2.00 9547450 0.92

RaPiD 5 10 15 10426080 1.00
GH 7 12 19 10 1.90 11045520 0.71

AMO 6 14 20 11 1.82 14641540 0.94
AML 7 13 20 11 1.82 14316820 0.91

RaPiD 5 10 15 15647780 1.00

Tracks 
(L/D/Tot)

All DCT/FFT

All FIR

All Matrix 
Mult

All Sort

Radar

Digital 
Camera

OFDM

Image Proc. 
Library

 
Fig. 3. The individual area results for the architectures generated by our three algorithms. Area 
values are in microns2. A “*” indicates that no RaPiD implementation was possible. Track 
count is given by # local tracks / # distance tracks / # total tracks 

Factor of 
Bound

Routing 
Factor of 

RaPiD

Total 
Factor of 

RaPiD
GH 8.38 13.38 21.75 1.84 1.37 0.66

AMO 2.75 19.13 21.88 1.70 1.53 0.69
AML 6.50 15.75 22.25 1.69 1.57 0.70

Number of 
Tracks

Averages
 

Fig. 4. A summary of the results of Fig. 3.  The factor of RaPiD area is separated into total 
factor, and the factor of the routing area only. 



 9

We also compared the areas and track counts between the different routing 
generation algorithms.  We expected that the Greedy Histogram method, because it 
does not require as much regularity as the other algorithms, would perform best in 
terms of track count and area.  In some cases, however, Greedy Histogram in fact had 
the highest area of the three algorithms.  We feel that this is because in the Greedy 
Histogram algorithm we are really only looking at one signal length at a time, and not 
considering how signals of multiple lengths can use wires on a single track.  These 
results indicate that the algorithm needs refinement. 

The remaining two algorithms, Add Max Once and Add Min Loop, have similar 
area results in general.  We expected, however, for the Add Max Once algorithm, 
which in all cases generated more distance routing tracks than Add Min Loop, to have 
higher area results than Add Min Once.  One case in particular explains why this is not 
actually the case.  For the All Matrix Mult application set the routing area for Add 
Min Loop in this case is actually 27% larger than the Add Max Once results with a 
higher proportion of distance tracks. The root cause of this area jump is actually the 
multiplexer height required for the track count.  These multiplexers increase the total 
height of the architecture by a somewhat small amount, but this amount multiplied by 
the width of the architecture is quite significant.  Multiplexer size is therefore of more 
import to area results than the number of bus connectors.  Bus connectors do affect 
the area to some degree, as can be seen by the All FIR results, just not as much as 
multiplexer size. 

Finally, we note that the track count generated by our three different routing 
generation algorithms is generally within a factor of two of our unrealistic lower 
bound.  Especially in the case of Add Max Once and Add Min Loop, which require a 
great deal of routing regularity that we would normally feel would move the results 
away from the bound.  We find this fact to be very encouraging. 

A custom hand-designed routing structure by a knowledgeable designer will likely 
require less area than our generated results in most cases.  However, we showed that 
our generated architectures, even with larger routing structures, are at least 
comparable to (and for these tests, better than) the custom-designed reconfigurable 
hardware when potential logic savings is considered.  We indicate that the quality of 
the generated results is quite reasonable even for the cases where the benchmarks can 
in fact be implemented on a pre-defined RaPiD structure.  Furthermore, the fact that 
some of the benchmark sets would not fit on the fixed RaPiD structure further 
justifies the assertion that different reconfigurable architectures may be needed 
depending on the targeted applications.  For this case, automatic design tools can 
provide a fast and efficient solution. 

Flexibility 

In addition to comparing our algorithms in terms of area and track count, we have 
also evaluated the flexibility of the architectures that they generate.  The tests in this 
section involve examining architectures that were designed for one benchmark or 
benchmark set, and attempting to place and route, using our initial place and route 
tool [2], a different benchmark onto that architecture.  The results for these tests are 
shown in Fig. 5.  Here we take each benchmark set used in the previous table of 



 10

results, and attempt to route all 26 of our benchmarks netlists to the generated 
architectures.  If a benchmark failed placement and/or routing, we also examined 
versions of the architectures created with a percentage-based increase in logic 
resources, as indicated in the table. 

Naturally, the larger benchmarks tended to generate architectures more capable of 
implementing the other benchmarks.  For example, the Digital Camera application 
and the minimal Image Processing Library were able to implement far more 
benchmarks than the All Matrix Multiply or All Sort benchmark sets.  The All Sort 
benchmark set has the added difficulty that absolutely no multiplier units were 
required by the benchmarks used to create the architectures.  Therefore, increasing the 
logic on a percentage scale does not introduce any multipliers.  All benchmarks that 
"fail" to place and route onto this architecture require at least one multiplier. 

 

G
H

A
M

O

A
M

L

G
H

A
M

O

A
M

L

G
H

A
M

O

A
M

L

G
H

A
M

O

A
M

L

G
H

A
M

O

A
M

L

G
H

A
M

O

A
M

L

G
H

A
M

O

A
M

L

G
H

A
M

O

A
M

L

SRC 3 3 3 3 3 3 2 2 2 5 5 5 3 3 3 6 6 6 5 5 5 4 4 4
0 8 8 8 18 18 18 16 16 16 11 11 11 9 9 9 5 5 5 3 4 4 1 1 1

10 0 0 0 2 2 2 1 1 1 4 4 4 0 0 0 7 7 7 1 0 0 0 0 0
20 0 0 0 1 1 1 0 0 0 0 0 0 3 3 3 0 0 0 0 0 0 0 0 0

Fail 15 15 15 2 2 2 7 7 7 6 6 6 11 11 11 8 8 8 17 17 17 21 21 21

DCT/FFT FIR Matrix All SortRadar Camera OFDM Image 

 
Fig. 5. Flexibility study of the generated architectures.  All 26 available benchmarks were 
placed and routed onto all architectures.  When necessary, we increase the logic in the 
architecture on a % basis to attempt to fit the benchmark.  The rows of this table indicate how 
many benchmarks are source netlists for the architectures (SRC), how many will P&R based on 
a percent increase in logic (0%, 10%, or 20% increase), and how many will fail altogether. 

In many cases, increasing the logic to the point where a benchmark could be placed 
also enabled for routing onto the architecture.  However, one of the FIR filter 
benchmarks will place onto the All Matrix Mult architecture generated by the Greedy 
Histogram method with no additional logic resources, but will fail to route.  
Increasing the logic by 10% allows the circuit instances to be placed in a more 
routable fashion.  Both Add Max Once and Add Min Loop create distributed routing 
structures, which may contribute to their ability to implement this benchmark without 
an increase in logic. 

Conclusions 

Because of its flexibility and ability to run applications in hardware instead of 
software, reconfigurable hardware is well-suited for use on Systems-on-a-Chip 
(SoCs).  Although a generic architecture, such as pre-existing FPGA tiles, could be 
used, the fact that the SoC will be custom fabricated opens the door to another 
possibility: customized reconfigurable logic.  However, the cost in terms of design 
time and effort to create a new reconfigurable architecture for each type of SoC would 
be prohibitive.  The Totem Project seeks to solve this problem by automating the 



 11

process of custom reconfigurable architecture creation in order to quickly and easily 
provide reconfigurable structures for use in systems-on-a-chip. 

Our previous work produced a tool that could generate architectures with the 
minimum amount of flexibility required for the maximum amount of hardware-reuse 
across benchmark circuits.  This resulted in a very ASIC-like architecture, with no 
real flexibility for future upgrades or changes.  The work presented in this paper 
shifted the focus to the automatic generation of more flexible architectures, 
concentrating on routing architectures for RaPiD-style 1D reconfigurable 
architectures. 

Using our architecture generation tool, we can provide a custom reconfigurable 
architecture targeted to specific netlists that uses just over 2/3 of the area of a RaPiD 
implementation on average.  Despite the fact that RaPiD is an efficient architecture 
targeted to DSP in general, in some cases our generated architectures are even less 
than half the required RaPiD area.  These improvements are due to the automatic 
customization of reconfigurable architectures according to the actual needs of the 
netlists that will be used.  We have also shown that even with these area savings, we 
are able to generate routing architectures flexible enough to handle changes to the 
application netlists, as well as different netlists entirely.  Researchers are only 
beginning to explore this area of study.  Our future work will expand our efforts even 
further, considering algorithm improvements, additional algorithms, and other issues 
aimed at producing efficient flexible architectures automatically. 

Acknowledgements 

Thanks to the members of the RaPiD group who provided tools, layouts and 
particularly advice.  Katherine Compton is supported by a UPR grant from Motorola, 
Inc.  Scott Hauck is supported in part by an NSF CAREER Award and a Sloan 
Research Fellowship.  The overall Totem effort is support by grants from NSF. 

References 

[1] S. Phillips, S. Hauck, "Automatic Layout of Domain-Specific Reconfigurable Subsystems 
for System-on-a-Chip", ACM/SIGDA Symposium on Field-Programmable Gate Arrays, 
2002. 

[2] A. Sharma, "Development of a Place and Route Tool for the RaPiD Architecture", Master's 
Project, University of Washington, December 2002. 

[3] D. C. Cronquist, P. Franklin, S.G. Berg, C. Ebeling, "Specifying and Compiling 
Applications for RaPiD", IEEE Symposium on FPGAs for Custom Computing Machines, 
1998. 

[4] D. C. Cronquist, P. Franklin, C. Fisher, M. Figueroa, C. Ebeling, "Architecture Design of 
Reconfigurable Pipelined Datapaths", Twentieth Anniversary Conference on Advanced 
Research in VLSI, 1999. 

[5] M. Scott, "The RaPiD Cell Structure", Personal Communications, 2001. 
[6] K. Compton, S. Hauck, “Totem:  Custom Reconfigurable Array Generation”, IEEE 

Symposium on FPGAs for Custom Computing Machines, 2001. 


