
An Execution Environment for Reconfigurable
Computing

Wenyin Fu and Katherine Compton
Department of Electrical and Computer Engineering

University of Wisconsin, Madison, WI USA
wenyinf@cae.wisc.edu, kati@engr.wisc.edu

Abstract— Although many studies have demonstrated the ben-
efits of reconfigurable computing, it has not yet penetrated
the mainstream. One of the biggest unsolved problems is the
management of the reconfigurable hardware in a multi-threaded
environment. Most research in reconfigurable computing has
assumed a single-threaded model, but this is unrealistic for
personal computing and many types of embedded computing. In
these cases, there may be several different threads or processes
running simultaneously, each wishing to use the reconfigurable
hardware. The operating system must decide how to allocate
the hardware at run-time based on the status of the system.
The system status could also influence the choice of different
implementations for each circuit based on area/speed tradeoffs.
This paper examines reconfigurable computing as it could be
used in mainstream systems, focusing on a proposed scheduling
algorithm to allocate the reconfigurable hardware. Our initial
tests indicate that reconfigurable computing with our scheduler
can easily achieve at least a 20% system-level speedup.

I. INTRODUCTION

Reconfigurable hardware is able to accelerate a variety of
applications, such as DNA sequencing, MPEG, and satellite
data processing [1]. Hardware is inherently more parallel than
a microprocessor, and avoids the overhead of reading and
decoding instructions. Reconfigurability allows the hardware
to accelerate different applications and sections of a single
application at different times. A variety of systems with re-
configurable hardware have been proposed and built, including
Splash2 [2], PAM [3], RaPiD [4], and PipeRench [5].

Frequently, this reconfigurable hardware is used as a co-
processor to a general-purpose processor [6][7][8][9], as
shown in Figure 1. The control-intensive parts of an applica-
tion typically execute in software, while the compute-intensive
sections are implemented in reconfigurable hardware. We refer
to these latter sections as application “kernels”. Kernels are
usually heavily executed loops that can be partly or completely
computed in parallel. An application may have several kernels,
and the hardware may be reconfigured during execution to
implement each of these kernels as needed. This technique is
known as reconfigurable computing (RC).

However, most work in reconfigurable computing focuses
on the design of the reconfigurable logic itself or its connection
to a host processor. There are a variety of problems remaining
to be solved before reconfigurable hardware will be able to
go mainstream as general-purpose accelerators in consumer
devices. This paper presents a paradigm for the use of recon-
figurable accelerators that addresses two of these issues.

Reconfig

Acceler.CPU

CACHE

(to main memory)

Fig. 1. Reconfigurable accelerator as a co-processor

First, application developers must be able to easily target
the reconfigurable hardware. Various groups are researching
compilers that can automatically detect the sections of an ap-
plication that should be accelerated in hardware [12][13][14].
The goal is to create compilers that will take a program written
in a high level language such as C++ or Java, and output both
a binary executable and one or more configuration bitstream
files for the targeted reconfigurable hardware. Currently, this
depends on knowing exactly what that hardware will look like,
and in many cases configuration bitstreams are not backward-
compatible. This means for any upgrade of the reconfigurable
logic in a system, the application must be recompiled. Support
of that hardware then becomes less appealing.

Second, most previous research has assumed only a single
thread of execution, where the given application has full own-
ership of both the host microprocessor and the reconfigurable
logic. While this can be a valid assumption for application-
specific and some domain-specific environments, it is not valid
for more general-purpose computing and even some embedded
systems, such as PDAs and cellular phones. The push towards
chip multiprocessors (CMP) and simultaneous multithreaded
(SMT) designs exacerbate this issue. Multiple threads from
multiple applications (or even from a single application) may
simultaneously demand to use the reconfigurable hardware.

To solve these two problems, we propose distributing ap-
plications both as a full software binary and with generic
hardware representations of the application kernels, scheduled
dynamically by the operating system. We first briefly describe
the distribution method to address the first problem, then

discuss the execution environment and scheduling algorithm
to solve the second problem.

II. APPLICATION DISTRIBUTION MODEL

If reconfigurable computing becomes mainstream, there will
likely be multiple different hardware designs. One reason for
this is varying consumer wants and needs. The graphics card
industry is an example of this effect, with high-end gamers
demanding significantly more powerful cards than low-end
home office users. Furthermore, some consumers upgrade
quickly to new designs, and others stay with what already
works for them. In order for RC to be truly easy for application
designers to support (critical for mainstream acceptance), they
must be able to compile an application once and have it work
for any of these designs.

The SCORE project [10] proposes that application design
would not target a specific implementation (software, RC,
ASIC). Instead, the flow of data streams is the focus. HASTE
[11] proposes using a unified representation for programs
which can be efficiently executed by both the CPU and the
RC units. Because a special ISA must be designed to facilitate
runtime hardware compilation, it is difficult to maintain binary
compatibility with today’s mainstream ISAs. While these are
interesting directions that would solve a number of problems
in RC, they would require a paradigm shift in application
development that is unlikely to occur in the near- or even
mid-term future. Our work therefore maintains a separation
between software and hardware.

We propose that an application be distributed with both soft-
ware and hardware descriptions of compute-intensive kernels.
The hardware description would be in a generic low-level form
such as a combination of RTL and structural Verilog, possibly
encrypted to protect the vendor. Upon installation, the generic
hardware description would undergo a final implementation on
the target hardware. The hardware format would have to be
generic enough that it could be implemented on almost any
likely design, but specific enough that the final translation to
actual hardware could be done quickly. The implementation
phase potentially includes simple synthesis operations, map-
ping, placement, and routing. The driver for the reconfigurable
accelerator would perform this task. The OS would call the
driver as necessary in response to hardware changes (upgrades)
or software installations. Applications could run “normally”
immediately after install but much faster after the hardware
has been fully implemented in the background, or a longer
install time could provide immediate acceleration. Meanwhile,
the software version could be used if reconfigurable hardware
is not present, busy, or not yet configured.

Figure 2 shows an application including both a software-
only binary and a set of hardware kernels. Each kernel may
have one or more hardware versions at different area/speed
trade-offs. In the figure, Kernel 1 has two implementations,
Kernel 2 has three, and Kernel 3 has one. These hardware
implementations are in addition to the software-only imple-
mentation contained in the binary executable. The multiple

Application

Software Binary

Fig. 2. Application distribution model

implementations could be created automatically during appli-
cation development, or even perhaps during the application
installation phase.

III. RC IN A MULTI-THREADED ENVIRONMENT

The previous section discussed application distribution and
installation. We now discuss run-time issues. The key issue
for RC in a multi-threaded environment is the competition
between threads for the hardware. Because the applications are
distributed with both software and hardware implementations
of the kernels, we can decide at run-time which thread(s)
should use the hardware, and which should instead run in
software. Figure 3 shows an example of three different threads,
T0, T1, and T2, executing in a system. The shaded areas show
hardware use, whereas the light sections show execution in
software. Multiple threads use the CPU and the reconfigurable
hardware concurrently.

���������
���������
���������

���������
���������
���������

�������
�������
�������

�������
�������
�������

�������
�������
�������

�������
�������
�������

���������������
���������������
���������������

���������������
���������������
���������������

	�	�	�	�	�	�	�	�	�	�	�	�	
	�	�	�	�	�	�	�	�	�	�	�	�	
	�	�	�	�	�	�	�	�	�	�	�	�	

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

���������������
���������������
���������������

���������������
���������������
���������������

�������
�������
�������

���������������
���������������
���������������

���������������������������
���������������������������
���������������������������

�������������������������
�������������������������
�������������������������

�������
�������
�������

�������
�������
�������

T0

T1

T2

Time

Fig. 3. Thread execution over time in SW (white) and HW (shaded)

Ideally, all threads could use the reconfigurable hardware
whenever needed. However, this may not always be possible
due to resource limitations. The system should not rely on
the threads to schedule their own use, as invariably at least
one thread will not ”play fair” with device allocation. The
operating system is a natural choice as independent arbiter
of the reconfigurable resources [15]. We will present multi-
ple scheduling algorithms that could be used by the OS to
dynamically bind application kernels to software or hardware
depending on the current system environment, set of threads,
and execution phases within the threads.

The job of the scheduler is to put the reconfigurable
hardware to the best use possible. This could be to accelerate
the system as a whole, or to accelerate a specific compute-
intense application. Note that the metric of “best use” need
not be performance, and may also change over time. Perhaps
while a device is powered by AC, high performance is the
goal. However, when the device is powered by a battery,
power consumption may be more critical. Based on the current
metric, the scheduler could even choose different kernel im-
plementations if multiple are available. We test the importance
of this ability later. This choice can also be affected by the
number of threads currently running in the system. If only one
or a few threads are running, perhaps the fastest (but largest)
implementations is appropriate. If many threads are running,
smaller versions could be used to accelerate more threads, but
each to a lesser degree.

As with any reconfigurable system, the configuration over-
head is a significant issue, and therefore is important to the
scheduling problem. The configuration overhead must not
eclipse the benefit of hardware execution. While work has
been done to minimize this configuration overhead both in
terms of the underlying configuration hardware of the device
[16] and through software techniques such as prefetching and
caching of configurations [17] [18], this work has focused on
a single-threaded environment. A multi-threaded environment
introduces further uncertainty of the next needed configuration.
The full details of how our scheduler handles configuration
overhead will be presented later, but first we discuss a few
assumptions about the configuration architecture and process.

To minimize configuration overhead, as well as to simplify
the issues of dynamic scheduling, we have chosen a partially
reconfigurable model that allows configurations to be quickly
relocated to different areas of the hardware. This is admittedly
a large assumption to make, as there certainly are hardware-
level difficulties for this type of flexibility. However, this is
not a new idea, and several techniques have been proposed.

The PRTR FPGA is a physical solution that allows for 1D
relocation of both incoming configurations and those already
on the hardware [16]. Alternately, a hardware abstraction
solution involves dividing the hardware into tiles, where a
tile represents a grouping of reconfigurable resources, and is
the atomic block of reconfiguration. Configurations would be
divided into a set of placed and routed tiles. When the config-
uration is placed onto the hardware, only the relative location
of the tiles and the connections between them would need to
be computed. This would allow for a fast final place-and-route
pass at runtime. A physical variant of the tiling technique is
to connect hardware tiles via a special bus [10]. Configuration
tiles can then be placed in any physical tile without requiring
very much if any run-time routing operations. We plan to
further examine these ideas in future efforts.

Finally, for any reconfigurable computing system, we must
examine the connection of the reconfigurable hardware to
a host microprocessor. We assume the reconfigurable co-
processor is attached to a host microprocessor, and is tightly
coupled with the host processor’s main memory, or better, the

data cache. Additionally, we must consider how the processor
and reconfigurable hardware interact during scheduling and
reconfiguration. For example, if we wish to avoid modify-
ing the processor, the OS must intercept function calls to
application kernels and replace them as needed with called
to the reconfigurable logic. Alternately, we could extend the
processor instruction set in a backward-compatible manner
so the given application can also run on a system without
a modified processor and reconfigurable accelerator. This type
of modification would be similar to Intel’s introduction of
MMX, SSE and SSE2 to its old x86 ISA. A special “branch”
instruction can be added that will perform a simple low-latency
table lookup to check if the kernel is presently in hardware. If
so, the hardware version will be used. If not, the kernel will
execute in software. Meanwhile, moving kernels into or out
of hardware would remain the job of the scheduler.

IV. SCHEDULING AND RUN-TIME BINDING OF KERNELS

Scheduling of configurations onto the hardware is critical in
order to maximize the hardware benefit and keep configuration
overheads in check, especially as the number of hardware
acceleratable kernels active in the system becomes larger. This
scheduling problem has been examined by a few different
research groups.

The SCORE project [10] examines dynamic scheduling,
but concludes that the particular techniques used caused too
much overhead. Instead, the work proposes static and quasi-
static techniques. These scheduler implementations do not yet
consider execution in software to be a viable alternative to
hardware. Also, although the paper discusses the possibility
of using a different amount of hardware resources in different
execution situations, it does not appear that this situation is
yet covered by the proposed scheduling techniques.

Dales described a reconfigurable resources manager, the
Custom Instruction Scheduler (CIS) [19], that schedules RC
hardware in a workstation environment. However, CIS (which
is part of the OS), is invoked each time a kernel is called that
is not present on the hardware, which could cause significant
overhead. While this work does allow for both hardware and
software kernel implementations, it does not consider the
possibility of multiple hardware kernel implementations to
allow the scheduler more flexibility in making decisions based
on speed and area tradeoffs.

Before delving into our own scheduling process, we will
first make an important assertion. Most programs exhibit
“phases” in their execution [23]. Each phase may have its own
unique program behavior, where certain kernels are invoked
much more often than others. The program moves from one
phase to another during execution, but inside each phase, the
program’s behavior can be considered as stable. Therefore, we
can consider the behavior of a program during a short time
period to be approximately static. This means that we can
also consider the allocation of reconfigurable hardware to be
a static optimization problem.

Therefore, in all of our scheduling algorithms, we consider
execution time to be divided into a sequence of time slices,

known as RC scheduling intervals. At the beginning of each
interval, the scheduler examines a set of candidate kernel
implementations, and determines which kernels (and which
implementation of each if multiple are available) should be
implemented in hardware. When an application attempts to
execute a kernel using the extended special branch instruction,
the kernel is computed in hardware if it is already configured,
or software otherwise.

The frequency of kernel use is monitored using a hardware-
based scoreboard. When a kernel not yet on the scoreboard is
called, it is added to the scoreboard with a score of 1. Each
time the kernel is used again its scoreboard value is incre-
mented. This scoring is performed automatically regardless of
whether the kernel is used in hardware or software.

Periodically, the scoreboard is flushed to allow kernels that
are no longer needed to drop off the board. If we choose to
flush the scoreboard every scheduling interval, the scoreboard
value for each kernel is actually its usage count starting from
the last scheduling event. The scoreboard value can also be
viewed as an execution frequency of the associated kernel
since the last flush.

Each time RC scheduling is performed, only kernels on
the scoreboard are candidates for hardware configuration. The
kernel implementations determined by the scheduler to be
most beneficial are loaded onto the hardware if they are not
already present. The hardware maintains a table of all the
kernels currently available that is updated whenever kernels
are configured onto or removed from the hardware as a
result of the scheduler. During the normal execution, when
a thread calls a kernel, it uses the modified instruction set to
conditionally execute in hardware. This instruction checks the
hardware table to see if the kernel is already loaded. If so, it
triggers hardware operation. If not, the kernel runs in software.
Either way, the scoreboard value for that kernel is incremented
as stated above.

In some cases, a kernel may be called while it is being
configured onto the hardware. In this case, the thread will
use the software version to help hide configuration latency–it
does not stall waiting for configuration to complete. After the
configuration completes, successive calls to the kernel will use
the hardware implementation.

Next we outline several algorithms to perform kernel
scheduling. These algorithms not only choose which kernels
should be implemented in hardware for each scheduling inter-
val, but also the specific hardware implementations for those
kernels. Multiple hardware implementations of a kernel may
be available in order to allow for a varying trade-off between
speed and area. This process is used to balance the hardware
resources amongst the competing threads, and choose the best
combination of hardware for each scheduling interval. We first
present two simple and fast-executing heuristics based on a
greedy method. Next we present a scheduler that uses the
Multi-Constraint Knapsack Problem (MCKP) [21] to model
hardware scheduling.

A. Most Frequently Used

The benefit of the Most Frequently Used (MFU) scheduler
is its simplicity and short runtime. It selects the kernels to
be implemented in hardware based only on the scoreboard
counter. Working from highest scoreboard value to lowest,
each kernel is examined to see if its smallest implementation
will fit on the available area of the reconfigurable hardware. If
so, that kernel is chosen for hardware, and the area constraint is
updated accordingly before considering the next kernel. This
process continues until RC hardware is full or there is no
valid kernel left in the candidate set. Pseudocode for the MFU
algorithm is given in Figure 4.

let S = set of all kernels in the scoreboard;

let occupied hardware area A = 0;

while (S is not empty && A < W_max)

 let k = kernel in S with max scoreboard count;

 let i = smallest implementation of k;

 if (A + area(i) <= W_max) then

 select i for hardware use;

 A = A + area(i);

 remove k from S;

Fig. 4. Pseudocode of Most Frequently Used method

B. Best Speedup

The Best Speedup algorithm uses a greedy method to
choose kernels for hardware implementation based on the
speedup achieved over software. In very iteration, the kernel
implementation with the highest speedup gets chosen if it fits
in the remaining area. This process continues until the RC
hardware is full or the candidate set is empty. Pseudocode for
the Best Speedup algorithm is given in Figure 5.

let S = set of all implementations of all

 kernels in the scoreboard;

let occupied hardware area A = 0;

while (S is not empty && A < W_max)

 let i = implementation in S with max speedup;

 if (A + area(i) <= W_max) then

 select i for hardware use;

 A = A + area(i);

 let k = kernel implemented by i;

 remove all implementations of k from S;

 else remove i from S;

Fig. 5. Pseudocode of Best Speedup method

C. Multi-Constraint Knapsack

The previous two algorithms are based on simplistic greedy
methods. Looking more closely at the scheduling problem, we
can formulate it as follows: there are N kernels, possibly from
different processes in the system, each having Sn different
hardware implementations in addition to the default software
implementation. The multiple hardware implementations of a
kernel usually represent different trade-off points of area vs.
speed or other metrics. The scheduler’s problem is to allocate
the limited hardware RC resources to a subset of these kernel

implementations to maximize some value of the system, such
as low power or high performance, while only limiting each
kernel to at most one hardware implementation at a time.

Mathematically, every kernel implementation n is associated
with a value v(n,m) and a weight w(n,m). The v represents
the benefit (speedup, power reduction, etc) of using the partic-
ular hardware implementation m, while w represents the cost
of using the hardware, such as the size of the configuration
(area on the hardware, configuration time of the kernel). The
goal is to select not only the “best” kernel(s) from the current
threads but also the “best” implementation of those kernels
during any given time slice.

Towards this end, a scheduler can attempt to maximize

V =
∑

n,m

x(n,m)v(n,m), where x(n,m) = {0, 1}

while satisfying:

W =
∑

n,m

x(n,m)w(n,m) ≤ WMAX ,

and
Sn∑

m=1

x(n,m) ≤ 1, n = 1, . . . , N

A value 1 of x(n,m) in the solution denotes that hardware
version m should be executed for kernel n in this scheduling
interval. The first inequality reflects the area constraint. The
second one guarantees there can be at most one hardware
implementation selected for each kernel. If none of the
x(n,m) for a particular kernel are one, it means the software
implementation is selected.

This problem can be modeled by the multi-constraint knap-
sack problem (MCKP). Here the knapsack is the RC hardware
which only has a limited area WMAX (total weight the
knapsack can carry), and the scheduler is trying to fill the RC
resources so as to maximize V (the total value of the items).
The next section discusses the MCKP and solution techniques.

1) Solving MCKP: A number of algorithms have been de-
signed to solve the multi-constraint knapsack problem, which
is known to be NP-complete. We can therefore either find
an optimal solution using an NP time algorithm like dynamic
programming, or use polynomial-time heuristics. However, NP
computation does not necessarily translate to “prohibitively
slow”. The dynamic programming algorithm is in actuality a
pseudo-polynomial algorithm, with a worst-case runtime of
O(SnNWMAX). For cases where those three parameters are
small, it can still run quite fast.

The scheduling algorithm runs at the beginning of every RC
scheduling interval, where the interval length is T . By choos-
ing T to be large enough, say an order of magnitude larger than
the algorithm run time, we can keep the computation overhead
in check. To further save the runtime, the MCKP solver will
allocate the RC area in units of tiles, where a tile is some
grouping of the underlying resources. In a Xilinx Virtex-series
FPGA for example, a tile could consist of multiple slices so
that the MCKP solver does not have to allocate area in a fine

grain slice-by-slice fashion. This helps to reduce the problem
size the MCKP solver must consider, again in an effort to keep
the scheduler runtime reasonable. A problem with 32 kernels
with 3 implementations each, and a 32-tile total hardware area
has a measured scheduler runtime on a 2.0GHz Pentium 4
processor of less than 0.5ms using a dynamic programming
exact solver. By setting the interval time to 0.8 seconds, the
overhead can be considered negligible.

However, there are other issues to be considered when
choosing an interval size T . If T is too small, both computation
overhead and excessive reconfiguration can cause the system
performance to be even worse than a conventional system.
On the other hand, if T is made too large, optimization
opportunities may be lost, and the assumption of a static
problem due to program phases may become invalid. Ideally,
T should match the phase duration of the programs. This
means that choosing a fixed T may not be the best solution
because there may be different timespans for phases both
across and within processes. A dynamic detection of program
phase changes and updating of T will be future work. For the
work presented here, we choose a fixed T for simplicity.

2) MCKP Value Models: An intuitive way of setting v, w,
and WMAX in the MCKP is to let

v = speedup × xfreq (1)

where speedup is the ratio of between the hardware execu-
tion time and the default software execution time. xfreq is the
number of times the kernel is called in the last RC scheduling
interval which is readily available from the scoreboard. This
value model focuses on fast hardware implementations for the
most frequently used kernels.

However this value model does not stress the consequence
of not moving a kernel to hardware, namely the software
duration of the kernel. In order to see how this can affect the
throughput of the system, assume we are choosing between
two kernels in a given scheduling operation. The first kernel’s
software version has a runtime of 10K cycles, and has a
hardware implementation with a 10X speedup. The second
kernel’s software version has a runtime of 100 cycles, and has
a hardware implementation also with a 10X speedup. These
two implementations will have the same value according to the
above model if they are called equally frequently. However,
if they are called equally frequently, implementing the first
kernel in hardware will result in a greater system throughput.
Our second value model attempts to capture this effect:

v = speedup × software xtime × xfreq (2)

The last value model we present here is intended to more
completely model the throughput effects of using a given
implementation of a given kernel. Assume a particular kernel
candidate n is currently available in implementation i, where
an i value greater than 0 represents one of the hardware
implementations, and i=0 represents the case where no hard-
ware implementation is loaded and the kernel must instead
execute in software. Based on this kernel’s counter value in
the scoreboard and the runtime of each of its implementations,

we can calculate the total runtime of this kernel during the last
scheduling interval to be Tk = C × Ti, where C is the count
and Ti is the execution time of its current implementation i.
Since the OS always keeps track of the total runtime of the
process, the time spent in other parts of the process (Te) in
the interval can also be obtained. Hence we now know the
process spent Tk time in this kernel and Te time outside of it.

With this breakup of the process’s execution time, and
assuming in the new scheduling interval the process will still
get the same CPU time Tk +Te, we can estimate the breakup
of the time if this kernel is instead run in software in the next
interval (note we already have this information if i=0) using
the following two equations:

T ′

k = (Tk + Te) ×
TkSi

TkSi + Te

T ′

e = (Tk + Te) ×
Te

TkSi + Te

where Si is the speedup over software for the ith implemen-
tation. This equation states that if the kernel was previously
computing in hardware, but must compute in software for the
next interval, it will spend T ′

k time for this kernel and T ′

e time
outside the kernel.

Next we consider how the different hardware implementa-
tions would affect the throughput compared to the software
implementation. For implementation j of a kernel, we can
estimate this process’s throughput increase factor to be:

TPF (n, j) =
T ′

k + T ′

e

T ′

k

Sj
+ T ′

e

Finally, we need to account for the fact that different threads
may have been given different amounts of CPU time in the
past interval by the OS scheduler (which again is different
than the RC scheduler). We do this in the same way (and for
the same reason) that we account for the software execution
time in Eq.2. The value function for the nth kernel’s jth
implementation is therefore:

v(n, j) = TPF (n, j)(Tk + Te) =
TkSi + Te

Tk
Si

Sj
+ Te

(Tk + Te) (3)

Because we are attempting to be as accurate as possible
in this cost model, our implementation also accounts for
the configuration time in the cost function. This makes the
equation itself long and complex, but it can be easily sum-
marized by saying that it is an adaptation of Eq.3 where if
implementation j is not already on the hardware (i 6= j),
the software version of the kernel must be used until the
hardware is fully configured. We consider a possible situation
where at the beginning of the interval the kernel will be called
repeatedly with no intervening software computations. Worst-
case, the kernel will execute in software some number of times
such that the number of kernel calls times the software running
time of the kernel is greater than or equal to the configuration
time of the kernel. This procedure is not required if the chosen
implementation is already on the hardware (i = j), and in

other cases is only required once at the beginning of the
RC scheduling interval. Note that in later sections where we
indicate that our scheduler is using Eq.3, we actually mean the
modified version that accounts for this configuration process.

The value functions that we have presented here target in-
creased system throughput. However, an MCKP scheduler can
be adapted to different goals by choosing different value mod-
els. Individual application performance could be emphasized,
or the value model could change periodically based on the
current power settings of the system using the reconfigurable
hardware. For example in systems operating on battery power,
the OS could optimize for power consumption by redefining
the value for each kernel as:

v = speedup × software xtime × xfreq/power.

V. SCHEDULING ALGORITHM SIMULATION

To test the validity of our proposed RC paradigm,
we selected three real world programs — mpeg2encode,
mpeg2decode and gnupg. After profiling these applications
we selected the most compute-intensive function from each
(for mpeg2decode there are two equally dominant functions:
idctcol and idctrow). These functions were used as our kernels.
Two versions of each of these kernels were implemented
in hardware on a Xilinx Virtex-II FPGA. The two different
versions of the hardware provide scheduler flexibility in per-
forming a trade-off between speed and area. In these designs,
the resource requirements of the kernels are slice-bound, and
so we only report the number of slices for the area.

Table I shows the details of these kernels. The software time
is measured on a 2.0GHz Pentium 4 processor with 512MB
RAM. The hardware time is given in terms of how many cycles
the CPU goes through in the same time it takes the hardware
to execute. The measure is given this way to normalize the
results, and work with our value equations above. Data is given
for both the “small”and “fast” versions of the kernels. For
kernel “dist1”, the execution time is not fixed, so the both
the software and hardware execution times given in the table
are the worst case values. For the other kernels, the execution
time of an individual kernel is not data-dependent (though
the number of times a kernel is used in an application may
be). Because we are modeling a full processor load where the
applications restart as soon as they complete, we not concerned
at the moment with this type of data dependence.

It should be noted that these kernels were not tweaked to
obtain the best performance, but were merely a quick manual
conversion from C to RTL Verilog. We assume that a sophisti-
cated compiler would be able to create configurations at least
as efficient as these designs, if not more so. For very speed-
critical applications, designers could almost certainly create
more sophisticated implementations. The speed/area trade-off
between the two different implementations of each kernel
are from creating one implementation that reused hardware
resources over several clock cycles, and another that pipelined
the computation to achieve greater performance.

Execution traces of the kernel invocation history along with
software timing information were collected for each program

Kernel % of Program SW time HW time Area Kernel
Runtime (cycles) (cycles) (slices) Speedup

idctcol 12 284
74 538 3.84
58 811 4.90

idctrow 12 234
67 520 3.49
51 855 4.59

dist1 42 2106
468 341 4.50
364 653 5.79

do encrypt 13 1243
544 162 2.28
130 507 9.56

TABLE I

KERNEL INFORMATION: EACH KERNEL HAS A SMALL AND A FAST IMPLEMENTATION. ALL TIMES ARE GIVEN IN TERMS OF THE NUMBER OF CPU

CYCLES THAT PASS DURING THE COMPUTATION TO NORMALIZE FOR DIFFERENT HARDWARE CLOCK PERIODS.

on the Pentium 4 machine mentioned above. Our custom simu-
lator uses these traces and the area and speed information from
the synthesis of the kernel implementations to evaluate the
system performance using the previously-discussed scheduling
techniques. The simulator uses a simple random selection
method for OS scheduling decisions with a 10ms scheduling
interval. The host processor modeled by the simulator supports
two simultaneous running threads like the commercial Intel
processors with Hyper-Threading technology[20].

Since the simulator is working with traces rather than
individual instructions, it does not quite accurately model
an SMT processor. Instead the model can be viewed as an
idealized SMT processor where there are no conflicts between
threads over all functional units and other resources. Our
focus is on the RC hardware scheduling, and so we use this
approximation. In future work, however, we do plan to more
closely model an actual SMT processor.

Before we discuss our results, we also wish to make clear
the differences between OS scheduling and RC scheduling.
The former is for scheduling processes onto the threads of the
processor while the latter one is responsible for allocating RC
resources. In our simulator if a process is running one kernel’s
hardware version when an OS scheduling event happens, the
OS will delay the scheduling until the current hardware kernel
finishes. Since in all of our applications the hardware finishes
computation very quickly (544 cycles at most), any delays in
OS scheduling will be minor.

We implemented the MFU and Best Speedup greedy sched-
ulers, as well as four different scheduling algorithms based on
the multi-constraint knapsack problem. The first three MCKP
implementations all use a dynamic programming method [21].
MCKP V1 is based on the value model in Eq.1, MCKP V2
uses the model in Eq.2, and MCKP TP uses the value
model presented in Eq.3. Finally, although we choose our RC
scheduling interval to be large enough that overhead of the
exact MCKP solver should not mask the benefits of using the
reconfigurable hardware, we also consider a heuristic solution
[21]. The MCKP APPROX scheduler solves the MCKP by
greedily choosing the kernel implementation with the best
value-to-weight ratio in the candidate set while still satisfying
the WMAX constraint. It does this selection repeatedly until
either the knapsack is full or the candidate set is empty. This

MCKP heuristic uses the same value function as MCKP TP,
and therefore by comparing the two, one can examine the
tradeoffs between the runtime of the exact MCKP solver and
the solution quality using the heuristic.

All three applications run simultaneously on a two-way
SMT simulator setting to model a heavy system load. We as-
sume equal priority for all three processes. The RC scheduling
interval T is set to 800ms. The tile size is set to be 64 slices
and the configuration latency for each tile is 0.15ms which is
calculated by scaling the configuration time of a typical Xilinx
Virtex-II V1000 FPGA.

We run the simulator for 60 billion cycles and count
the number of equivalent software cycles that each program
has achieved, where each hardware kernel use contributes a
number of cycles of “work” equal to the number of processor
cycles the software implementation would have required. In
other words, while the idctcol kernel’s fast implementation
may complete in hardware in 58 CPU cycles, its software
execution time requires 284 cycles. Therefore, using this
hardware implementation accomplishes 284 cycles of work
in 58 cycles of time (remembering that hardware execution
time has been recalculated in terms of CPU cycles in Table I).
We sum the equivalent software cycles of work for all three
programs together and divide by the number of cycles of work
that would have been achieved if no reconfigurable hardware
were available. This calculated value is the throughput increase
factor of the system. Our calculation accounts for scheduler
overhead because the scheduler execution must be performed
within the examined window, and cycles spent scheduling are
cycles not spent performing work, and the scheduler execution
time is not considered as part of the work achieved.

Figure 6 shows the system overall throughput increase for
all applications versus the available RC area for the three
MCKP schedulers using the exact MCKP solver. We plot the
curve for the area up to 50 tiles. At 46 tiles, all of the fastest
hardware implementations (which are also the largest) of all of
the kernels can fit on the hardware simultaneously. From this
graph, we can see that the value model chosen for an MCKP
scheduler plays an important role in the performance of the
scheduler. The lack of consideration for the kernel’s software
duration in value model 1 severely hurts the system throughput
increase. Value model 2 is actually nearly as effective as the

more complex value function of Eq.3, but the more complex
model does produce the best overall results.

Using the MCKP TP scheduler (the best from Figure 6)
and given a reasonable amount of RC resources, the system
throughput can easily increase by more than 20%. If we
reformulate this throughput increase in terms of processor
speed, it is equivalent to increasing a processor from 2.0GHz
to 2.4GHz. As raw clock speeds become more difficult to
increase, as evidenced by Intel’s recent abandonment of their
latest efforts in this area [22], using reconfigurable computing
becomes a more viable alternative technique to increase system
performance. Also, we should emphasize that we are using
very simple techniques to translate kernels to hardware, and
that we are accelerating only one or two kernels from each
program, as shown in TableI. With more kernels and better
hardware implementations of those kernels, we would expect
an even greater improvement.

In Figure 7, we contrast the performance of our best-
performing MCKP scheduler, MCKP TP, with the two simple
but fast greedy methods mentioned earlier: MFU and Best
Speedup. This graph also shows the result for the approximate
MCKP solver (MCKP APPROX). The scheduling overheads
are accounted for in these values, so that these scheduling
techniques can be more fairly compared. The simple MFU
and Best Speedup heuristics do not perform nearly as well as
MCKP TP. These two heuristics only consider single metrics
of frequency or speedup, and therefore have an incomplete
picture of the cost/benefit of different scheduling choices.
The MCKP APPROX algorithm, also a greedy-type heuristic,
performs better than MFU and Best Speedup due to the more
sophisticated value function, but still performs worse than
MCKP TP. In our tests, the overhead of finding an exact
solution to MCKP does not outweigh the improved solution
that is found. However, as the number of kernels, number
of implementations per kernel, and RC area increases, the
approximate solver may become a more viable alternative, so
this issue will be revisited in future work.

 0

 5

 10

 15

 20

 25

 30

 0 5 10 15 20 25 30 35 40 45 50

T
hr

ou
gh

pu
t i

nc
re

as
e

fa
ct

or
 (

%
)

RC area (tile)

MCKP_TP
MCKP_V2
MCKP_V1

Fig. 6. Throughput increase factor vs. hardware area (I)

 0

 5

 10

 15

 20

 25

 30

 0 5 10 15 20 25 30 35 40 45 50

T
hr

ou
gh

pu
t i

nc
re

as
e

fa
ct

or
 (

%
)

RC area (tile)

MCKP_TP
MFU

SPEED
MCKP_APPROX

Fig. 7. Throughput increase factor vs. hardware area (II)

Thus far, we have allowed the schedulers to consider two
different hardware implementations for each application ker-
nel. Next we will test the importance of having this choice.
Since the overall system throughput is strongly affected by
how much of the application has been accelerated, we look
only at the kernel throughput increase for this comparison in
Figures 8 and 9 instead of the system throughput increase.
The kernel throughput factor is defined as the ratio between
the equivalent kernel cycle count and the real software-only
kernel cycle count. In other words, we don’t consider the non-
accelerated part of the program in this graph. This is done for
two reasons. First, we feel a sophisticated compiler would be
able to automatically create multiple implementations the same
way we did, and that these multiple implementations need not
come at the cost of additional designer effort. Second, we have
only accelerated a few applications, and a small portion of
each, and therefore the non-accelerated code dominates in our
case. For both graphs we only consider MCKP TP scheduling
algorithm. This graph shows three different curves.

In Figure 8, one curve is identical to the previous MCKP TP
results, where we allow the scheduler to choose between two
implementations for each kernel. Another curve shows the
case where only the fastest implementation of all kernels
is available. The last curve shows the case where only the
smallest implementation of all kernels is available to be
scheduled. Figure 9 shows the kernel throughput with both
the “Fastest only” and the “Smallest only” cases normalized
against the results of MCKP TP with both implementations
available. Having a choice of implementations boosts the
kernel throughput for the “middle” areas of this graph by about
30% on average.

These graphs indicate that providing multiple implementa-
tions of a single kernel greatly improves the kernel throughput
factor. For the smallest hardware areas, the scheduler restricted
to the smallest implementations performs better than the
one restricted to the fastest (largest) implementations, and
conversely, for the largest hardware areas, the “fastest only”

scheduler performs better than the “smallest only” scheduler.
In all cases, the scheduler with a choice of implementations
provides the maximum throughput increase of the three tech-
niques compared in the graph. With smaller areas, few if any
“fastest” implementations can fit in the hardware. With larger
areas, there may be room available for a faster implementation
that goes unused. When the scheduler is allowed to choose the
implementation, it can use different implementations based on
the applications being used and the available hardware.

Having this choice is particularly important if the hardware
size and complete application set are not known in advance.
One such situation would be if different commercial proces-
sors were coupled with differing amounts of reconfigurable
hardware. Low-end processors might include little to no re-
configurable logic, but high-end processors may have quite a
bit. There would be additional hardware design issues in this
situation, but for now we are only concerned with the high-
level management of the hardware.

 0

 50

 100

 150

 200

 250

 300

 0 5 10 15 20 25 30 35 40 45 50

K
er

ne
l t

hr
ou

gh
pu

t i
nc

re
as

e
fa

ct
or

 (
%

)

RC area (tile)

Multiple
Fastest only

Smallest only

Fig. 8. Throughput increase factor when allowing multiple implementations
vs. allowing only fastest/smallest ones

One hardware scheduling technique that has been suggested
is to just choose one application in the system to accelerate,
rather than attempt to accelerate all of them. For this next
experiment, we number the applications, and each curve in
Figure 10 represents the system throughput increase if only
one of our three applications is accelerated. We also show
the curve where, as before, we allow all applications to be
accelerated. From the figure we can see that accelerating only
a single application is not a good technique for increasing the
overall system throughput.

We examine one of these cases, where only mpeg2decode is
accelerated, in greater detail in Figure 11. This application is
chosen because it has two kernels for consideration, whereas
the other applications each have a single kernel. Five of our
scheduling algorithms are compared in this case to test how
choosing only a single application to accelerate affects the
importance of the scheduling algorithm. As the graph shows,
if an application has more than one kernel, the choice of
scheduling algorithm can make a difference even for single-

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 5 10 15 20 25 30 35 40 45

N
or

m
al

iz
ed

 k
er

ne
l t

hr
ou

gh
pu

t i
nc

re
as

e
fa

ct
or

RC area (tile)

Fastest only
Smallest only

Fig. 9. Kernel throughput when only using the fastest/smallest implemen-
tations, normalized to the kernel throughput of a scheduler with a choice of
multiple implementations

application acceleration.
In most previous research when accelerating a single ap-

plication, the schedule of configuration loading and use was
performed for each application. The application designer
must (possibly with the aid of an automatic tool) perform
the scheduling, and thus different applications may interact
poorly when run simultaneously. Scheduling of commonly-
used resources (as we hope reconfigurable hardware becomes!)
belongs at a higher level than the applications. An OS-based
scheduler can make scheduling decisions for the benefit of the
system, and by changing the value function of the scheduler,
can even emphasize the acceleration of a particular application
if desired or necessary.

 0

 5

 10

 15

 20

 25

 30

 0 5 10 15 20 25 30 35 40 45 50

T
ho

ug
hp

ut
 in

cr
ea

se
 fa

ct
or

 (
%

)

RC area (tile)

Accel all
Accel 1
Accel 2
Accel 3

Fig. 10. Throughput increase factor when we only choose to accelerate one
of the applications

VI. FUTURE WORK

There is still a wide variety of work remaining in the area of
OS support for reconfigurable computing. For this particular

 0

 1

 2

 3

 4

 5

 6

 7

 0 5 10 15 20 25 30 35 40 45 50

T
ho

ug
hp

ut
 in

cr
ea

se
 fa

ct
or

 (
%

)

RC area (tile)

MCKP_TP
MCKP_V2

MCKP_APPROX
MFU

SPEED

Fig. 11. Throughput increase factor when only accelerating program
mpeg2decode

project, there are a number of possible future improvements.
We would like to assemble a wider set of applications and
hardware kernel implementations. We would also like to move
towards a cycle-accurate simulation techniques that would
allow us to more accurately represent an SMT processor.
Furthermore, we intend to expand our testing to examine the
effects of a dynamically-determined RC scheduling interval
length, the effects of non-full CPU loads on the quality of our
scheduling algorithms, and how our MCKP TP value function
should change if applications are allowed to have different
priorities.

VII. CONCLUSION

This paper has focused on a proposed application distribu-
tion and execution model for reconfigurable computing. We
discussed how applications supporting reconfigurable acceler-
ators should include both the full software binary and multiple
hardware implementations of each kernel. Our results show
that multiple kernel implementations allow for greater overall
acceleration. We also presented scheduling algorithms for
allocating the reconfigurable hardware to competing threads.
Threads not running in hardware are still executed in software,
avoiding the traditional problem of stalling on hardware avail-
ability. Our best-performing algorithm, MCKP TP shows an
overall throughput more than 20% over software-only execu-
tion. While single-application acceleration can produce more
impressive benefits of orders of magnitude, a system-level
increase of 20% is significant given the increasing difficulty
of achieving faster clock speeds in today’s processors.

Our model for reconfigurable computing, coupled with
an intelligent hardware-aware high-level-language compiler,
will allow software developers to easily create hardware-
accelerated applications. The distribution model and OS-level
hardware scheduler will allow end-users to take advantage of
hardware acceleration with no extra effort on their part. Just
as importantly, our scheduler will allow for efficient use of
the reconfigurable hardware in a multithreaded/multi-tasking

environment. This work therefore addresses two significant
problems that have kept reconfigurable computing from the
mainstream.

ACKNOWLEDGMENTS

We thank Saket Jamkar, Matthew Karlen, Arvind Prasad,
and Kyle Rupnow for their help with the hardware implemen-
tation of the kernels.

REFERENCES

[1] K. Compton, S. Hauck, “Reconfigurable Computing: A Survey of
Systems and Software”, ACM Computing Surveys, Vol. 10, No. 3, June
2002.

[2] D. Buell, J.M. Arnold, W.J. Kleinfelder, Splash 2: FPGAs in a Custom
Computing Machine. IEEE Computer Society Press, 1996.

[3] P. Bertin, Memoires Actives Programmables: Conception, Realisation et
Programmation, PhD thesis, Universite Paris 7, 1993.

[4] C. Ebeling, D.C. Cronquist, P. Franklin, “RaPiD–Reconfigurable
Pipelined Datapath”, Field Programmable Logic Conference, 1996.

[5] S. C. Goldstein, H. Schmit, M. Budiu, S. Cadambi, M. Moe, R. Tay-
lor, “PipeRench: A Reconfigurable Architecture and Compiler”, IEEE
Computer, Vol. 33, No. 4, 2000.

[6] J.R. Hauser, J. Wawrzynek, “Garp: A MIPS Processor with a Reconfig-
urable Coprocessor”, Int’l Symp. FCCM, April 1997.

[7] T. Miyamori, K. Olukotun, “REMARC: Reconfigurable Multimedia
Array Coprocessor”, Proc. Int’l Symp. FPGA, February 1998.

[8] Z.A. Ye, A. Moshovos, S. Hauck, P. Banerjee, “CHIMAERA: A
High-Performance Architecture with a Tightly-Coupled Reconfigurable
Functional Unit”, Proc. Int’l Symp.Computer Architecture, June 2000.

[9] R.D. Wittig, P. Chow, “OneChip: An FPGA Processor With Reconfig-
urable Logic”, Int’l Symp. FCCM, April 1996.

[10] E. Caspi, R. Huang, Y. Markovskiy, J. Yeh, J. Wawrzynek, A. DeHon,
“A Streaming Multi-Threaded Model”, Third Workshop on Media and
Stream Processing (MSP-3), December 2001.

[11] B. Levine, H. Schmit, “Efficient application representation for HASTE:
Hybrid Architectures with a Single, Transformable Executable”, Int’l
Symp. FCCM, April 2003.

[12] R. Allen, D. Gajski, “The Case for C/C++ Hardware Design”,
EEDesign, June 9, 2000.

[13] T. Callahan, J.R. Hauser, J. Wawrzynek, “The Garp Architecture and C
Compiler”, IEEE Computer, April 2000.

[14] Y. Li, T. Callahan, E. Darnell, R. Harr, U. Kurkure, J. Stockwood,
“Hardware-Software Co-Design of Embedded Reconfigurable Architec-
tures”, Design Automation Conference, 2000.

[15] G. Brebner, “A Virtual Hardware Operating System for the Xilinx
XC6200”, FPL 1996.

[16] K. Compton, Z. Li, J. Cooley, S. Knol, S. Hauck, “Configuration
Relocation and Defragmentation for Run-Time Reconfigurable Systems”,
IEEE Trans. on VLSI, Vol. 10, No. 3, June 2002.

[17] Z. Li, Configuration Management Techniques for Reconfigurable Com-
puting, Ph.D. Thesis, Northwestern University.

[18] B. Xu, D.H. Albonesi, “Runtime Reconfiguration Techniques for
Efficient General-Purpose Computation”, IEEE Design and Test, Vol.17
No.1, p.42-52, January 2000.

[19] M. Dales, Managing a Reconfigurable Processor in a General Purpose
Workstation Environment, Ph.D. Thesis, University of Glasgow.

[20] D. Koufaty, Marr D.T. Marr, “Hyperthreading technology in the netburst
microarchitecture”, IEEE Micro, Vol. 23, No. 2, March-April 2003.

[21] S. Martello, P. Toth, Knapsack Problems: Algorithms and Computer
Implementations, J. Wiley & Sons, 1990.

[22] D. Lammers, “Intel cancels Tejas, moves to dual-core designs”, EE
Times, http://www.eet.com/, May 07, 2004.

[23] P. Denning, “Working Sets Past and Present”, IEEE Transactions on
Software Engineering, Vol. SE-6, No. 1, Jan. 1980.

