
� 1

Exploration of Pipelined FPGA Interconnect Structures

 Akshay Sharma Katherine Compton Carl Ebeling Scott Hauck
 Electrical Engineering Electrical & Computer Engineering Computer Science & Engineering Electrical Engineering
 University of Washington Northwestern University University of Washington University of Washington
 Seattle, WA Evanston, IL Seattle, WA Seattle, WA
akshay@ee.washington.edu kati@ece.northwestern.edu ebeling@cs.washington.edu hauck@ee.washington.edu

ABSTRACT
In this work, we parameterize and explore the interconnect
structure of pipelined FPGAs. Specifically, we explore the
effects of interconnect register population, length of registered
routing track segments, registered IO terminals of logic units,
and the flexibility of the interconnect structure on the
performance of a pipelined FPGA. Our experiments with the
RaPiD [4] architecture identify tradeoffs that must be made
while designing the interconnect structure of a pipelined FPGA.
The post-exploration architecture that we found shows a 19%
improvement over RaPiD, while the area overhead incurred in
placing and routing benchmarks netlists on the post-exploration
architecture is 18%.

Categories and Subject Descriptors
B.7.1 [Integrated Circuits]: Types and Design Styles – gate
arrays.

B.7.2 [Integrated Circuits]: Design Aids – placement and
routing.

General Terms
Algorithms, Measurement, Experimentation.

Keywords
pipelined FPGA, pipelined interconnect, registered routing,
architecture explorations, PipeRoute

1. INTRODUCTION
Over the last few years, reconfigurable technologies have made
remarkable progress. Today, state-of-the-art devices [1,14] from
FPGA vendors provide a wide range of functionalities. Coupled
with gate-counts in the millions, these devices can be used to
implement entire systems at a time. However, improvements in
FPGA clock cycle times have consistently lagged behind
advances in device functionalities and capacities. Even the
simplest circuits cannot be clocked at more than a few hundred
megahertz.

A number of research groups have tried to improve clock cycle
times by proposing pipelined FPGA architectures. Some
examples of pipelined architectures are HSRA [13], RaPiD
[4,6], and the architecture proposed in [11]. The distinguishing
features of a pipelined FPGA are the number and location of
registers in the architecture. Pipelined FPGAs provide a
relatively large number of registers, both in the logic and
interconnect structures. Applications that are mapped to
pipelined FPGAs are often retimed to take advantage of
abundant, easily available registers.

Pipelined FPGA architecture design poses a number of
challenges, not the least of which is the composition of the
interconnect structure. Earlier work [2,3] has shown that the
design of FPGA interconnect structures involves tradeoffs
amongst different parameters like segment-length, switch-box
types and layout considerations. However, the interconnect
structure of a pipelined FPGA is different. Unlike conventional
architectures, the interconnect structure of a pipelined FPGA
may include a large number of registers. The number and
location of interconnect registers plays an important role in
determining the performance of applications mapped to
pipelined FPGAs. If the number of interconnect registers is too
few, the benefits of pipelining may get lost in long, circuitous
routes. On the other hand, the area penalty due to too many
interconnect registers may reduce the impact of improvements in
clock cycle time.

The objective of this paper is to parameterize and explore the
performance of pipelined interconnect structures. Specifically,
we try to answer the following questions:

• What are the benefits of registering the IO terminals of

logic units? Note that both RaPiD and HSRA provide
register banks at IO terminals.

• How many sites in the interconnect structure should be

registered? A related question is how many registers should
a single site provide?

• How long should the segments of registered routing tracks

be?

• How does the flexibility of the interconnect structure affect

the performance of pipelined FPGAs?

Permission to make digital or hard copies of all or part of this
work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or
commercial advantage and that copies bear this notice and the
full citation on the first page. To copy otherwise, or republish, to
post on servers or to redistribute to lists, requires prior specific
permission�and/or a fee.
FPGA’04, February 22–24, 2004, Monterey, California, USA.
Copyright 2004 ACM 1-58113-000-0/00/0004…$5.00.

� 2

To the best of our knowledge, the only previous work that
explored pipelined interconnect structures can be found in [12].
In that work, the authors present a limited study that
demonstrates speed-ups by adding registers to routing switches.
The authors do not explore multiple-register interconnect sites,
segment lengths of registered tracks, or the flexibility of the
interconnect structure. This work expands the pipelined
interconnect exploration space to include these parameters.

The rest of this work is organized as follows. Section 2
introduces the concept of pipelined signals. In Section 3, we
describe the target architecture that we used in our experiments.
Section 4 describes the set of benchmark netlists that we
selected. In Section 5, we describe the CAD tools that we used
to enable the exploration. Section 6 presents the trends that we
observed during our exploration. A quantitative evaluation of
the results of our exploration is presented in Section 7. Finally,
in Section 8 we conclude this paper and identify areas for future
work.

2. PIPELINED SIGNALS
Netlists that are mapped to pipelined FPGAs generally contain a
significant number of pipelined signals. A pipelined signal is a
signal that must go through registers in the interconnect
structure. An example of a pipelined signal sig is shown in Fig.
1. In this case, there must be three registers between S and K1,
four registers between S and K2 and five registers between S
and K3. It can easily be seen that a pipelining-unaware FPGA
router may not find a route for sig that includes enough registers
to individually satisfy the register constraints between the source
and sinks. In [10], we showed that the even the two-terminal
pipelined routing problem is NP-Complete, and proposed an
algorithm that can be used to efficiently find routes that contain
the requisite number of registers.

Fig. 1: A multi-terminal pipelined signal
�

3. THE RaPiD ARCHITECTURE
In this section we describe features of the RaPiD architecture
[6]. RaPiD provides the FPGA framework used in this paper.
The RaPiD architecture is targeted to high-throughput, compute-
intensive applications like those found in DSP. Since such
applications are generally pipelined, the RaPiD datapath and
interconnect structures include an abundance of registers. The 1-
Dimensional (1-D) RaPiD datapath (Fig. 2) consists of coarse-
grained functional units that include ALUs, multipliers, small
SRAM blocks, and general purpose registers (hereafter
abbreviated GPRs). Each functional unit is 16 bits wide. The
interconnect structure consists of 1-D routing tracks that are also

16 bits wide. There are two types of routing tracks: short tracks
and long tracks. Short tracks are used to achieve local
connectivity between functional units, whereas long tracks
traverse longer distances along the datapath. In Fig. 2, the
uppermost five tracks are short tracks, while the remaining
tracks are long tracks. A separate routing multiplexer is used to
select the track that drives each input of a functional unit. Each
output of a functional unit can be configured to drive multiple
tracks by means of a routing demultiplexer.

Fig. 2: An example of a RaPiD [6] architecture cell.
Several RaPiD cells can be tiled together to create a
representative architecture.

The long tracks in the RaPiD interconnect structure are
segmented by means of bus connectors (shown as empty boxes
in Fig. 2 and abbreviated BCs). BCs serve two roles in the
RaPiD interconnect structure. First, a BC serves as a buffered,
bidirectional switch that facilitates the connection between two
long-track segments. Second, a BC serves the role of an
interconnect register site. RaPiD provides the option of picking
up zero, one, two or three registers at each BC. The total number
of BCs determines the number of registers that can be acquired
in the interconnect structure.

While BCs are used as registered, bidirectional switches that
connect segments on the same long track, GPRs can be used to
switch tracks. A GPR’s input multiplexer and output
demultiplexer allow a connection to be formed between arbitrary
tracks. At the end of a placement phase, all unoccupied GPRs
are included in the routing graph as unregistered switches. The
ability to switch tracks provides an important degree of
flexibility while routing netlists on the RaPiD architecture.

4. BENCHMARKS
The set of benchmark netlists that we used during exploration
includes implementations of FIR filters, sorting algorithms,
matrix multiplication, edge detection, 16-way FFT, IIR filtering
and a camera imaging pipeline. While selecting the benchmark
set, we tried to include a diverse set of applications that were
representative of the domains to which RaPiD is targeted. We
also tried to ensure that the benchmark set was not unduly
biased towards netlists with too many or too few pipelined
signals. Fig. 3 shows the percentage of pipelined signals in each
benchmark netlist.

sig
S

K1

K2

K3

� 3

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

firt
m

fft1
6

ca
sc

ad
e

matm
ult4

so
be

l

im
ag

er
ap

id

firs
ym

ev
en

so
rt_

g

so
rt_

rb

NETLIST

FR
A

C
TI

O
N

 P
IP

E
LI

N
E

D
 S

IG
N

A
LS

Fig. 3: The fraction of pipelined signals in each
benchmark netlist.

5. CAD TOOLS & FLOW
The CAD flow that supports the exploration of RaPiD’s
pipelined interconnect structure is presented in this section.
Applications are mapped to netlists using the RaPiD compiler
[5], and the architecture is represented as an annotated structural
Verilog file. During data acquisition, a flexible architecture
generation tool is used to produce parameterized architectures
that represent different points in the interconnect exploration
space.

The placement of a netlist is determined using a Simulated
Annealing [8] algorithm. The cost of a placement is formulated
as a linear function of the maximum and average cutsize, where
cutsize is the number of signals that need to be routed across a
vertical partition of the architecture for a given placement. Since
the RaPiD interconnect structure provides a fixed number of
routing tracks, the cost function must be sensitive to changes in
maximum cutsize. At the same time, changes in average cutsize
also influence the cost of a placement. This is because average
cutsize is a direct measure of the total wirelength of a placement.
Pipelining information is included in the cost of a placement by
mapping each pipelining register (a pipelining register is a
register that must be mapped to an interconnect register) in the
netlist to a unique BC in the interconnect structure. Our high-
level objective in mapping pipelining registers to BCs is to place
netlist components such that the router is able to find a sufficient
number of BCs in the interconnect structure while routing
pipelined signals. A more detailed discussion of the placement
strategy can be found in [9,10].

After the final placement of a netlist has been determined, the
netlist is routed using the PipeRoute algorithm [10]. PipeRoute
is an architecture independent algorithm based on Pathfinder [7]
that routes pipelined signals on to FPGAs that have a registered
interconnect structure. The basic building block used by
PipeRoute is an optimal 1-Register router that finds a lowest-
cost two terminal route that goes through at least one register in
the interconnect structure. A two terminal N-Register route is
recursively built from an (N-1)-Register route by successively
replacing each segment of the (N-1)-Register route by an
optimal 1-Register route, and then selecting the lowest cost N-
Register route. The routing tree for a multi-terminal pipelined

signal is built one sink at a time. Every time a new sink is to be
routed, we try to greedily reuse segments within the current,
partially built routing tree to provide registers on the route to the
new sink.

The PipeRoute algorithm presented in [10] was developed under
certain simplifying assumptions. First, we assumed that register
sites in the interconnect structure can only provide zero or one
register. Second, we did not address the fact that the IO
terminals of functional units may themselves be registered. As
mentioned in Section 3, the BCs in RaPiD’s interconnect
structure allow a signal to pick up between zero and three
registers. Furthermore, the outputs of each functional unit are
connected to the interconnect structure through a register bank
that also provides between zero and three registers. In order to
take advantage of registered IO terminals and multiple-register
sites in the interconnect structure, we use a pre-processing
heuristic before routing a netlist. This heuristic attempts to
locally maximize the number of registers that can be acquired at
registered IO terminals and multiple-register sites. By doing so,
we try to reduce the total number of register sites that have to be
found in the interconnect structure during pipelined routing.

A last, albeit important, feature that we added to the PipeRoute
algorithm was to make it timing driven. Since the primary
objective of pipelined FPGAs is the reduction of clock cycle
time, it is imperative that a pipelined routing algorithm
maintains control over the criticality of pipelined signals during
routing. In making PipeRoute timing driven, we drew inspiration
from the Pathfinder algorithm. While routing a signal,
Pathfinder uses the criticality of the signal in determining the
relative contributions of the congestion and delay terms to the
cost of routing resources. However, in the special case of a
pipelined signal, the signal’s route may contain multiple
interconnect registers and hence different segments on the route
may be at different criticalities. Furthermore, the signal’s route
may go through different interconnect registers from one routing
iteration to the next. Thus, before routing a pipelined signal, we
are faced with making an intelligent guess about the overall
criticality of a pipelined signal. Our solution is to make a
pessimistic choice and assign the criticality of the most critical
segment to the criticality of the pipelined signal.

6. INTERCONNECT EXPLORATION
In this section, we present our interpretation and analysis of the
trends that we observed while exploring RaPiD’s pipelined
interconnect structure. Our primary measure of the quality of a
given point in the exploration space is the post place-and-route
geometric average of the area-delay product across the
benchmark set. The area-delay product of a netlist is measured
from the minimum number of RaPiD cells required to route a
netlist in less than thirty-two tracks. Area models for the RaPiD
architecture are derived from a combination of the current layout
of the RaPiD cell, and transistor-count models. The delay model
is extrapolated from SPICE simulations.

Before presenting our results, we briefly explain the effects of
certain important interconnect features on the area and delay of a
netlist:

� 4

Track Count: The track count of a netlist is the minimum
number of tracks required to route the netlist. Track count
directly affects area in two ways. First, the height and width
of the IO multiplexers and demultiplexers are determined
by the number of tracks that connect to them. Second, the
number of BCs in the architecture is directly proportional
to the number of tracks.

BCs: The frequency and number of BCs in the interconnect
structure affects both area and delay. A large number of
BCs provide an abundance of interconnect register sites.
Consequently, a BC-rich interconnect structure improves
the routability of pipelined signals. Routability
improvements generally result in track count reductions,
and if the area benefit due to such reductions is greater than
the area-penalty of a large number of BCs, an overall area
win may result. The number and location of BCs in the
interconnect structure also influences the delay
characteristics of a netlist. One reason is the effects of
segmentation on the critical path delay of a netlist [2].
Another reason is that the number of BCs determines the
quality of the routes of pipelined signals. Recall that the
number of BCs is a direct measure of the number of
interconnect registers. In BC-poor architectures, the
pipelined router finds long, circuitous routes for heavily
pipelined signals. Such poor-quality routes result in a
deterioration of the delay characteristics of a netlist.

The remainder of this section is devoted to an axis-by-axis
exploration of RaPiD’s pipelined interconnect structure.
�

6.1 REGISTERED IO TERMINALS:

0

1000000

2000000

3000000

4000000

5000000

6000000

7000000

8000000

9000000

Unregistered Reg Inputs Reg Outputs

Registered IO Terminals

A
R

E
A

 (u
m

2)

0

2

4

6

8

10

12

D
E

LA
Y

 (n
s)

AREA DELAY

Fig. 4: Area and delay numbers for architectures with
registered outputs, registered inputs and unregistered
IO terminals.

Our first step is to explore the possible benefits of functional
units that have ‘registered’ input or output terminals. An IO
terminal of a functional unit is registered if the terminal can be
connected to the interconnect structure through a local register
bank. Local register banks allow pipelined signals to pick up
registers at the functional unit, thus reducing the number of
registers that have to be found in the interconnect structure. Fig.
4 shows the area and delay numbers that we obtained on

mapping the benchmark netlists to architectures with registered
input, registered output and unregistered terminals. Surprisingly,
the effect of registered IO terminals on area is negligible. This is
because the area penalty of adding registers to IO terminals
nullifies the area benefits attributable to the track count
reductions shown in Fig. 5.

While area is insensitive to registered IO terminals, the delay
performance of architectures with registered inputs is clearly
better. This is because the preprocessing heuristic mentioned in
Section 5 moves a large number of registers from the
interconnect structure in to the inputs of functional units.
Consequently, the pipelined router has to find fewer registers in
the interconnect structure, thus improving the delay
characteristics of netlists. Interestingly, architectures with
registered outputs show no delay improvement when compared
to architectures that have unregistered IO. This is probably
because the number of interconnect registers that are moved in
to the outputs of functional units is an insignificant fraction of
the total number of interconnect registers that have to be found
during pipelined routing. Overall, architectures with registered
input terminals proved to be the best choice in terms of area-
delay product.

0

5

10

15

20

25

Unregistered Reg Inputs Reg Outputs

REGISTERED IO

TR
A

C
K

 C
O

U
N

T

Fig. 5: Track counts for architectures that have
registered input, registered output and unregistered IO
terminals.

�

6.2 BUS CONNECTORS:
In Section 3 we mentioned that BCs serve as buffered registered
switches in the RaPiD interconnect structure The total number
of BCs in the interconnect structure plays a major role in
determining the overall area and delay of a netlist mapped to the
RaPiD architecture. The number of BCs in the interconnect
structure is varied by changing the number of BCs per long track
in a RaPiD cell. (Hereafter, ‘BCs per long track’ will simply be
called BCs per track). For example, the RaPiD cell shown in
Fig. 2 has one BC per track, while the cell shown in Fig. 6 has
two BCs per track. Varying the number of BCs per track not
only changes the number of interconnect register sites, but also
the length of long track segments. Long track segments in Fig. 2
span thirteen functional units, while long track segments in Fig.
6 span six or seven functional units.

� 5

�

Fig. 6: A RaPiD cell that has two BCs per long track.

Fig. 7 shows the area and delay numbers that we obtained as a
result of varying the number of BCs per track (the number 0.5
on the x-axis implies architectures that had a single BC per track
for every two RaPiD cells). There is a marked improvement in
delay when going from half to a single BC per track. This is
because at half BC per track, track segments are too long and
there are relatively few BCs available for pipelined signals. On
increasing the number of BCs per track past one, the delay
gradually goes back up. This is because the delay incurred in
traversing an increased number of BCs along a long track more
than offsets improvements due to shorter track segments and
tighter pipelined routes.

0

1000000

2000000

3000000

4000000

5000000

6000000

7000000

8000000

9000000

0.5 1 2 3 4

BCs / TRACK

A
R

E
A

 (u
m

2)

0

5

10

15

20

25

D
E

LA
Y

 (n
s)

AREA DELAY

Fig. 7: The effect of varying number of BCs per track
on area and delay.

Fig. 7 also shows an area benefit as the number of BCs per track
is increased to two. This is consistent with the 45% reduction in
track count when the number of BCs per track is increased from
half to two (Fig. 8). The area gradually increases after that due
to the fact the area-cost of adding more BCs per track exceeds
any improvements in track count.

Fig. 9 shows the area-delay product trend that we obtained. The
area-delay products at one and two BCs per track are within 1%
of each other, which leads us to believe that anywhere between
one and two BCs per track is a good architectural choice.

0

5

10

15

20

25

0.5 1 2 3 4

BCs / TRACK

TR
A

C
K

 C
O

U
N

T

Fig. 8: The effect of varying number of BCs per track
on track count.

0

50000000

100000000

150000000

200000000

0.5 1 2 3 4

BCs / TRACK

A
R

E
A

*D
E

LA
Y

 (x
 1

0
-2

1 m
2 s)

Fig. 9: The effect of varying number of BCs per track
on the area-delay product.

6.3 MULTIPLE-REGISTER BUS CONNECTORS:
The number of registers in a BC is another parameter that
influences the overall area-delay performance of a circuit. An
increase in the number of registers per BC allows pipelined
signals to pick up a greater number of registers at a single
interconnect site. This improves track count because a reduced
number of BCs have to be found while routing pipelined signals.
At the same time, the delay characteristics of the netlists may
also get better due to a reduction in the long, circuitous routes
that are found while routing pipelined signals on architectures
that have register-poor BCs. Fig. 10 shows area and delay trends
when the number of registers per BC is varied between one and
seven.

There is an improvement in area as the number of registers per
BC is increased to three. However, the area goes back up as the
number of registers per BC is increased past that point. This is
because increases in BCs area exceed any area improvements
attributable to track-count reductions (Fig. 11).

� 6

0

1000000

2000000

3000000

4000000

5000000

6000000

7000000

8000000

9000000

10000000

1 2 3 4 5 6 7

REGISTERS / BC

A
R

E
A

 (u
m

2)

0

2

4

6

8

10

12

D
E

LA
Y

 (n
s)

AREA DELAY

�

Fig. 10: The effect of varying number of registers per
BC on area and delay.

0

5

10

15

20

25

1 2 3 4 5 6 7

REGISTERS / BC

TR
A

C
K

 C
O

U
N

T

Fig. 11: The effect of varying number of registers per
BC on track count.

At first sight, the delay trend in Fig. 10 seems surprising. While
there is an expected improvement in delay as the number of
registers per BC is increased to four, the delay unexpectedly
goes back up past that point. A possible reason for this behavior
is the greedy manner in which the preprocessing heuristic
pushes interconnect registers into functional unit input terminals.
While conducting experiments, we assume that the number of
registers in a BC is equal to the maximum number of registers
that can be picked up at the inputs of functional units (we made
this assumption to limit the number of axes that we explored to a
practical number). Thus, if the number of registers per BC is
large, so is the number of registers that can be moved into the
sinks of a pipelined signal. A shortcoming of this assumption is
that long segments of a pipelined signal may get unpipelined
because of the removal of registers from the interconnect
structure. This phenomenon is illustrated in Fig. 12. Assume that
a maximum of four registers can be picked up at the sinks K1-
K8. In this case, one interconnect register will be moved into
K1, two into K2, three into K3, and four into K4-K8. This
process effectively unpipelines a long-track segment, which in
turn may increase the critical path delay of a netlist.

S

K6

1 1 1 1 1 1 1 1

K7K5 K8K4K3K2K1

S

K6

1 1 1 1

K7K5 K8K4K3K2K1

Long, unpipelined track segment
Fig. 12: Pushing registers from the interconnect
structure into functional unit inputs sometimes results
in long, unpipelined track segments.

Fig. 13 shows the area-delay product vs. number of registers per
BC. A clear sweet spot can be observed at three registers per
BC.

0

10000000

20000000

30000000

40000000

50000000

60000000

70000000

80000000

90000000

100000000

1 2 3 4 5 6 7

REGISTERS / BC

A
R

E
A

*D
E

LA
Y

 (x
10

 -2
1 m

2 s)

Fig. 13: The effect of varying number of registers per
BC on the area-delay product.

�

6.4 SHORT / LONG TRACK RATIO:�
RaPiD’s interconnect structure is a mix of short tracks and long
tracks (Fig. 2). Short tracks achieve local connectivity between
functional units. Long tracks are used to traverse longer
distances along the datapath, and are segmented by means of
BCs. In addition to serving as bidirectional switches, BCs also
play the role of interconnect register sites.

We demonstrated earlier that the combined area-delay product
of the benchmark netlists is sensitive to the number of BCs per
track. Varying the number of BCs per track changes the
distribution and total number of BCs in the interconnect
structure. Another factor that directly affects the number of BCs
is the ratio between short and long tracks. Fig. 14 shows the area
and delay trends that we observed on varying the fraction of
short tracks in the architecture. Notice that the delay is higher
for architectures that have short-track fractions < 0.28. This
trend may be due to the fact that short-track poor architectures
force signals to use long-track segments to establish connections
that could otherwise have been routed on short-track segments1.

���
�In general, the routing delay of a long-track segment exceeds that of a
short-track segment. A long segment has more resistance due to its
length, and greater fanout capacitance.

� 7

For short-track fractions > 0.28, the delay again increases
because of two reasons. First, long-track poor architectures force
signals to use multiple short-track segments to establish
connections that may have otherwise used a single long-track
segment2. Second, the reduction in the number of BCs increases
the possibility of long, circuitous routes being found for heavily
pipelined signals.

0

1000000

2000000

3000000

4000000

5000000

6000000

7000000

8000000

9000000

0 0.14 0.28 0.42 0.56

FRACTION SHORT TRACKS

A
R

E
A

 (u
m

2)

0

2

4

6

8

10

12

D
E

LA
Y

 (n
s)

AREA DELAY
�

Fig. 14: The effect of varying fraction of short tracks on
area and delay.

The area curve has a minimum at 0.14. Architectures that are
relatively poor in short tracks pay an area penalty due to an
excessive number of BCs and an increased track count (Fig. 15).
The track count increases because signals that could have been
routed on segments on the same short track have to use
segments on different long tracks. As the short-track fraction is
increased past 0.14, the area goes back up. This is again due to
an increase in track count (Fig. 15). This time however, the track
count increases because fewer BCs are available to pick up
registers in the interconnect structure.

0

5

10

15

20

25

30

0 0.14 0.28 0.42 0.56

FRACTION SHORT TRACKS

TR
A

C
K

 C
O

U
N

T

Fig. 15: The effect of varying fraction of short tracks on
track count.

��

�Note that unoccupied GPRs in the datapath can be used by signals to
switch tracks arbitrarily.

The area-delay trend vs. the fraction of short tracks in Fig. 16
shows a clear minimum at 0.28.

0

10000000

20000000

30000000

40000000

50000000

60000000

70000000

80000000

0 0.14 0.28 0.42 0.56

FRACTION SHORT TRACKS

A
R

E
A

*D
E

LA
Y

 (x
10

 -2
1 m

2 s)

�
Fig. 16: The effect of varying fraction of short tracks on
the area-delay product.

6.5 DATAPATH REGISTERS (GPRs):
The main purpose of GPRs in the RaPiD architecture is to serve
as pipelining sites in the datapath structure. However, any
unoccupied GPR units can also be used by signals to switch
tracks in the interconnect structure. A large number of
unoccupied GPRs in the datapath structure increases the
flexibility of the interconnect structure. Consequently, the total
number of GPRs in the architecture plays a role in determining
the routability of netlists that are mapped to the RaPiD
architecture. This role may be especially pronounced in netlists
that occupy a large percentage of GPRs in the datapath. Fig. 17
shows area and delay trends when the number of GPRs per
RaPiD cell is varied between five and ten (the number 6 on the
x-axis corresponds to the number of GPRs provided in the
original RaPiD cell shown in Fig. 2).

0

1000000

2000000

3000000

4000000

5000000

6000000

7000000

8000000

5 6 7 8 9 10

GPRs / CELL

A
R

E
A

 (u
m

2)

0

2

4

6

8

10

12

D
E

LA
Y

 (n
s)

AREA DELAY

Fig. 17: The effect of increasing the number of extra
GPRs / RaPiD cell on area and delay.

� 8

Fig. 17 shows that varying the number of GPRs per RaPiD cell
produces marginal area benefits while going from five to seven
GPRs per cell. This is consistent with the reduction in track
count shown in Fig. 18. When the number of GPRs / cell is
increased past seven, the area goes back up due to the penalty of
adding extra GPRs to the architecture. Notice in Fig. 18 that
track count remains relatively constant past seven GPRs.

0

5

10

15

20

25

5 6 7 8 9 10

GPRs / CELL

TR
A

C
K

 C
O

U
N

T

Fig. 18: The effect of increasing the number of extra
GPRs / RaPiD cell on track count.

The delay curve in Fig. 17 has a minimum at nine GPRs per cell.
Architectures that have fewer than nine GPRs per cell do not
have sufficient switching sites. Consequently, the pipelined
router is forced to find potentially longer routes for pipelined
signals. The delay goes back up past nine GPRs per cell because
the delay of track segments increases. This increase can be
attributed to the greater fanout capacitance per segment that
results when the number of GPRs per cell is increased. Fig. 19
shows that the area-delay product is minimum for architectures
that have nine GPRs per RaPiD cell.

0

10000000

20000000

30000000

40000000

50000000

60000000

70000000

80000000

90000000

5 6 7 8 9 10

GPRs / CELL

A
R

E
A

*D
E

LA
Y

 (x
10

 -2
1 m

2 s)

Fig. 19: The effect of increasing the number of extra
GPRs / RaPiD cell on area-delay product.

7. QUANTITATIVE EVALUATION
In this section we present a quantitative evaluation of our
results. First, we quantitatively compare the original RaPiD
architecture with the results of the exploration of the

interconnect structure. Second, we quantify the area overhead
incurred in placing and routing benchmark netlists on the post-
exploration architecture that we found.

7.1 COMPARISONS WITH RaPiD���

We reproduce the RaPiD cell from Section 3 in Fig. 20. The
RaPiD cell has registered outputs, a single BC per track, three
registers per BC and 28% short tracks.

Fig. 20: An illustration of the RaPiD cell [6].

�

We first note that the choices of a single BC per track, three
registers per BC and 28% short tracks are in fact consistent with
the findings of our exploration in Section 6. At the same time,
there are differences between RaPiD and our findings. First,
RaPiD has registered outputs. Our exploration found that
registered inputs are a better choice. Second, we found that the
number of GPRs per RaPiD cell is insufficient, and that there
should be nine GPRs per RaPiD cell (three more than the six
GPRs shown in Fig. 20). Table 1 presents a comparison between
the original RaPiD architecture and the best post-exploration
architecture that we found. Column 1 lists the benchmark
netlists, column 2 lists area-delay products (all area-delay
product values are x10-21m2s) measured from the post-
exploration architecture, column 3 lists area-delay products
measured from RaPiD, column 4 lists percentage improvements,
and column 5 lists the fraction of pipelined signals in each
netlist. RaPiD outperforms the post-exploration architecture for
netlists that have less than 30% pipelined signals, while the post-
exploration architecture performs better than RaPiD for netlists
that have more than 54% pipelined signals. Overall, the post-
exploration architecture’s area-delay product is 19% better.

Table 1: A quantitative comparison of RaPiD with the post-

exploration architecture

��������
� 	 ���

 � � �	
�� � � � �� � � ��� �
 	 � ��
�
 � � ��	 � �
� �� ���� �� �

������� � 	 	
 � �
 � � �
 � 	
 � 	 � � ��
 � � � � �� 	 �

������� � � � � �
 � � � � � � � �
 � � � � ��
 � � � � �
 � �

� � �� � ��� �

 �
 � � 	 	 � �
 	
 � � � � �
 � � �� � � � �� �

����� � � 	 �
 � 	 � � � � � � � � � � 	 � � �	 � � � � �� � �

����� � � � � �
 � � � � � � �
 �

 � � � � � � ��	 � � � � �� � �

���
 � �
 � � 	 	 �
 � � � � � � � � � �
 � ��
 � � � � ��
 �

�� � �� �� ! �" � � � � � �
 �
 �
 �
 � 	 �
 �
 � � �	 � � � � �� � �

� �# � " � �
 �

 � �

 � �
 �

 � � � � � �� � � � � �� � �

��� � �� 	
 � � � 	 �
 � � � � �
 � � � � � �� � � � � ��
 �

�
 � �
 � �� � � � ! " " � # � $ � � ! � %& � ' �� " � � �

� 9

7.2 AREA OVERHEAD
We quantify area overhead by comparing the area of a netlist
mapped to the post-exploration architecture with the area of a
netlist that is mapped to the same architecture using a
pipelining-unaware place-and-route flow. In a pipelining-
unaware flow, pipelined signals are treated like normal,
unpipelined signals. Fig. 21 shows the unpipelined version of a
pipelined signal.

S
K1 K2

1 1 1 1 1

S
K1 K2

Fig. 21: Unpipelining a pipelined signal.

The pipelining-unaware placement tool attempts to reduce only
maximum and average cutsize (Section 5). The pipelining-
unaware router attempts only connectivity routing, since there
are no registers to be found in the interconnect structure. Fig. 22
shows the area overhead incurred in placing and routing
benchmark netlists on the post-exploration architecture. The
overall area overhead incurred is 18%.

0

2000000

4000000

6000000

8000000

10000000

12000000

so
rt_

rb

so
rt_

g
fft1

6

im
ag

erap
id

firs
ym

ev
en firt

m

matm
ult

4

ca
sc

ad
e

so
be

l

NETLIST

A
R

E
A

 (u
m

2)

UNPIPELINED SIGNALS PIPELINED SIGNALS
�

Fig. 22: Area overhead incurred in placing and routing
the benchmark netlists on the post-exploration
architecture.

8. CONCLUSIONS & FUTURE WORK
The primary objective of this work was to identify and explore
various interconnect parameters that affect the overall
performance of applications that are mapped to pipelined FPGA
architectures. Our hope is that the designers of pipelined FPGAs
will use the findings of our exploration as an aid in the future. In
conclusion:

1. Adding registers to the inputs of functional units may

improve the performance of pipelined netlists (Section 6.1).
However, if the number of registers is large, greedily
pushing the maximum number of registers into inputs may
result in a deterioration of the delay of a netlist (Section
6.3).

2. The number and distribution of registered interconnect sites
greatly influence overall performance. If there is an
insufficient number of interconnect register sites, the
pipelined router is forced to find long, circuitous routes that
adversely affect both track count and delay (Section 6.2).
On the other hand, peppering the interconnect structure
with register sites may result in an unacceptable area
penalty.

3. For reasons similar to those in 2, the number of registers
per interconnect site also has to be carefully selected
(Section 6.3).

4. The flexibility of the interconnect structure has a bearing
on the performance of netlists. In Section 6.5, we show that
architectures that are GPR-poor do not perform well. This
is because of increased track counts and longer pipelined
routes. On the other hand, architectures that have too many
GPRs suffer from an excessive area-penalty.

There are a number of areas that we may investigate in future
work. One area that we may research is algorithms for timing-
driven pipelined routing. A second area that we could look at is
the development of heuristics that can efficiently utilize
multiple-register sites in the interconnect structure of pipelined
FPGAs. Finally, it would be useful to explore the area and delay
performance of island-style, pipelined FPGA architectures.

9. ACKNOWLEDGMENTS
We would like to thank Chris Fisher for providing us with a set
of benchmark netlists. Thanks are also due to Ken Eguro and
Shawn Phillips for the area and delay models. This work was
supported by grants from the NSF. Scott Hauck was supported
in part by an NSF Career Award and an Alfred P. Sloan
Fellowship.
 �����������

� 10

10. REFERENCES
[1] Altera Inc., “Stratix™ Device Family Features”, available

at http://www.altera.com.

[2] V. Betz and J. Rose, “FPGA Routing Architecture:
Segmentation and Buffering to Optimize Speed and
Density”, ACM/SIGDA Seventh International Symposium
on Field-Programmable Gate Arrays, pp 59-68, 1999.

[3] V. Betz and J. Rose, “Circuit Design, Transistor Sizing and
Wire Layout of FPGA Interconnect”, IEEE Custom
Integrated Circuits Conference, pp 171 - 174, 1999.

[4] Darren C. Cronquist, Paul Franklin, Chris Fisher, Miguel
Figueroa, and Carl Ebeling, “Architecture Design of
Reconfigurable Pipelined Datapaths”, Twentieth
Anniversary Conference on Advanced Research in VLSI, pp
23-40, 1999.

[5] Darren C. Cronquist, Paul Franklin, Stefan Berg, Carl
Ebeling, “Specifying and Compiling Applications to
RaPiD”, Field-Programmable Custom Computing
Machines, 1999.

[6] Carl Ebeling, Darren C. Cronquist, Paul Franklin, "RaPiD -
Reconfigurable Pipelined Datapath”, 6th International
Workshop on Field-Programmable Logic and Applications,
pp 126-135, 1996.

[7] Larry McMurchie and Carl Ebeling, “PathFinder: A
Negotiation-Based Performance-Driven Router for
FPGAs”, ACM Third International Symposium on Field-
Programmable Gate Arrays, pp 111-117, 1995.

[8] C. Sechen, VLSI Placement and Global Routing Using
Simulated Annealing, Kluwer Academic Publishers,
Boston, MA: 1988.

[9] A. Sharma, “Development of a Place and Route Tool for
the RaPiD Architecture”, Master’s Project, University of
Washington, December 2001.

[10] A. Sharma, C. Ebeling, S. Hauck, “PipeRoute: A
Pipelining-Aware Router for FPGAs”, 11th ACM/SIGDA
International Symposium on Field-Programmable Gate
Arrays, pp 68-77, 2003.

[11] Amit Singh, Arindam Mukherjee, Malgorzata Marek-
Sadowska, “Interconnect Pipelining in a Throughput-
Intensive FPGA Architecture”, ACM/SIGDA Ninth
International Symposium on Field-Programmable Gate
Arrays, pp 153-160, 2001.

[12] Deshanand P. Singh, Stephen D. Brown, “The Case for
Registered Routing Switches in Field Programmable Gate
Arrays”, ACM/SIGDA Ninth International Symposium on
Field-Programmable Gate Arrays, pp 161-169, 2001.

[13] William Tsu, Kip Macy, Atul Joshi, Randy Huang, Norman
Walker, Tony Tung, Omid Rowhani, Varghese George,
John Wawrzynek and Andre DeHon, “HSRA: High-Speed,
Hierarchical Synchronous Reconfigurable Array”, ACM
Seventh International Symposium on Field-Programmable
Gate Arrays,pp , 1999.

[14] Xilinx Inc., “VirtexII™ Platform FPGA Features”,
available at http://www.xilinx.com.

