
Automatic Design of Area-Efficient
Configurable ASIC Cores

Katherine Compton
University of Wisconsin

Madison, WI
kati@engr.wisc.edu

Scott Hauck
University of Washington

Seattle, WA
hauck@ee.washington.edu

Abstract

Reconfigurable hardware has been shown to provide an efficient compromise between

the flexibility of software and the performance of hardware. However, even coarse-grained

reconfigurable architectures target the general case, and miss optimization opportunities present

if characteristics of the desired application set are known. Efficiency can be increased by

restricting the structure to support a class or a specific set of algorithms, while still providing

flexibility within that set. By generating a custom array for a given computation domain, we

explore the design space between an ASIC and an FPGA. However, the manual creation of these

customized reprogrammable architectures would be a labor-intensive process, leading to high

design costs. Instead, we propose automatic reconfigurable architecture generation specialized

to given application sets. This article discusses configurable ASIC (cASIC) architecture

generation that creates hardware on average up to 12.3x smaller than an FPGA solution with

embedded multipliers and 2.2x smaller than a standard cell implementation of individual circuits.

 2

1. Introduction

While FPGAs and reconfigurable systems have been effective in accelerating DSP,

networking, and other applications [1], the benefit is in many cases limited by the fine-grained

nature of many of these devices. Common operations such as multiplication and addition are

more efficiently performed by coarse-grained components. A number of reconfigurable systems

have therefore been designed with a coarse-grained structure. These structures target the general

case, attempting to fulfill the computation needs of any application that may be needed.

However, because different application types have different requirements, this creates a large

degree of wasted hardware (and silicon area) if the applications run on the system are

constrained to a very limited range of computations. Unused logic and programming points

occupy valuable area and can slow down computations, contributing to the overhead of the

device without providing benefit. While the flexibility of general-purpose hardware has its place

for situations where the computational requirements are not known in advance, frequently

specialized on-chip hardware is used to obtain greater performance for a specific set of compute-

intensive calculations.

More customized reconfigurable hardware has been examined in an effort to reduce the

amount of “useless” hardware and increase the efficiency of the computing device.

Architectures such as RaPiD [2], PipeRench [3], and Pleiades [4] have made progress in this

direction by targeting multimedia and DSP domains. Commercial devices such as Morpho [5]

 3

and Stretch [6] are also more coarse-grained than traditional FPGAs. The Totem Project1

[7][8][9][10][11][12] takes this one step further, allowing the user to select the computation

domain (such as signal processing, encryption, scientific data processing, or a subset of

applications within one of these domains) by providing representative circuits to an architecture

generator. This concept was also proposed by the RaPiD group. These customized devices are

ideal for situations where the category of computation is known, but the individual circuit set is

either not completely known or not fixed. However, if we know the actual circuits to be

computed, we can create an even more specialized design called a configurable ASIC (cASIC).

cASICs are intended as accelerators on Systems-on-a-Chip (SoCs). While the circuit set

that they can implement is fixed, they are different from traditional ASICs in that some level of

hardware programmability is retained. This programmability allows the accelerator to

implement different circuits from its circuit set at different points of time through run-time-

reconfiguration. Because the number of reconfiguration points is limited, not only is

performance expected to be close to that of an ASIC, but the circuit will be significantly smaller

than an FPGA implementation. Furthermore, because we are reusing one set of hardware to

implement multiple circuits, it will be smaller than the sum of the ASIC areas of the individual

circuits in almost all cases.

The area benefit of cASICs is critical. For many high-performance applications, special

hardware accelerators can become quite large. If each of the desired accelerators were

synthesized separately, this could lead to an unreasonably large (and expensive) chip. Allowing

1 The Totem Project is a large multi-person project with numerous publications. The related theses are the most

comprehensive documents. Totem conference and journal publications can be found at the referenced website.

 4

the accelerators to share hardware makes their use much more attractive to the SoC designers.

This will encourage the use of specialized accelerator circuits, leading to devices with higher

performance and lower power consumption than ones that rely on a microprocessor for all

computations. Battery-powered devices in particular would benefit from the low-power

execution.

Specialized cASICs, while beneficial in theory, would be impractical in practice if they

had to be created by hand for each group of applications. Each of these optimized reconfigurable

structures may be quite different, depending on the application set desired. One could manually

specify resource sharing in an HDL description or in circuit layout. Unfortunately, this would

contribute significantly to the design costs of the hardware. Synthesis tools do have some ability

to find resource sharing opportunities, but unfortunately this would still require the designer to

merge the needed circuits into a single design. Simply instantiating the circuits in a larger

framework generally prevents the synthesis tools from finding sharing opportunities. Flattening

the circuit can help, but it will increase the synthesis time dramatically, and even so, many

sharing opportunities may be overlooked by tools optimized for sharing within smaller areas of a

single circuit. Research into automated cASIC sharing is therefore essential in order to decrease

the cost of customized architecture development.

The Totem Project focuses on the automatic generation of customized reconfigurable

architectures. While most of the Totem Project research focuses on more flexible architecture

design, this article describes our work towards a cASIC generator including experiments and

data beyond the initial preliminary results [13]. This generator takes as input a set of RaPiD-

format netlists and creates as output an architecture capable of implementing any of the provided

circuits. Like RaPiD, the architecture is a 1D bidirectional datapath composed of coarse-grained

 5

computational units and word-size busses. Although the current version of the cASIC generator

creates RaPiD-style datapaths, many of the techniques that we will discuss can apply more

generally as well. This possibility is discussed in more depth in section 5. As we will show later

in this article, the generated cASIC architectures are significantly smaller than required by a

traditional FPGA implementation, and can even be under half the size of standard cell

implementations of the individual circuits.

2. Background

Current efforts in the Totem Project focus on coarse-grained architectures suitable for

compute-intensive application domains such as digital signal processing, compression, and

encryption. The RaPiD architecture [2][14] is presently used as a guideline for the generated

architectures due to its coarse granularity, one-dimensional routing structure, and compiler.

Coarse-grained units match the coarse-grained computations currently targeted. The

one-dimensional structure is efficient for many DSP applications, but also simplifies the

architecture generation process significantly. Future work in the Totem Project focuses on the

two-dimensional case, discussed in part in section 5. Finally, a compiler [15] for this system is

already in place, which aids in the development of application circuits for Totem. The compiler

takes a description written in RaPiD-C and creates circuit netlists suitable for RaPiD or Totem

implementation.

 6

G
PR

R
A

M

R
A

M

G
PR

M
U

LT

G
PR

A
LU

A
LU

G
PR

G
PR

R
A

M

A
LU

G
PR

G
PR

R
A

M

R
A

M

G
PR

M
U

LT

G
PR

A
LU

A
LU

G
PR

G
PR

R
A

M

A
LU

G
PR

Figure 1: A single cell from the RaPiD architecture [14][16]. A full architecture is composed of multiple

cells laid end-to-end.

The RaPiD architecture is composed of a set of repeating cells (Figure 1) tiled

horizontally. The logic units within the cells operate on full words of data, and include 16-bit

ALUs, 16x16 multipliers, 16-bit wide RAM units, and 16-bit registers. Each component

contains a multiplexer on each of its inputs that choose between the signals of each routing track.

Each component also has a demultiplexer on each of the outputs that allow the unit to directly

output to any of the routing tracks. Inputs are on the left side of a unit, while the outputs are on

the right side of the unit. Global inputs also reside on the 1D datapath at the ends of the

architecture.

The routing architecture is a one-dimensional segmented design, where each track is

word-width. The top routing tracks are local routing tracks that contain short wires for fast

short-distance communication. The bottom ten tracks provide longer distance routing, allowing

wires to be connected to form longer wires. The bus connectors are shown as small squares in

the figure, and provide optional pipeline delays to mitigate the delay added through the use of

longer wires and more routing switches.

 7

3. cASIC Generation

While the flexibility of traditional FPGA structures is one of their greatest assets, it is

also one of their largest drawbacks — greater flexibility leads to greater area, delay, and power

overheads. Creating customized reconfigurable architectures presents the opportunity to greatly

reduce these overheads by discarding excess flexibility. This article discusses taking this idea to

the extreme end of the spectrum – removing all unneeded flexibility to produce an architecture

as ASIC-like as possible. We call this style of architecture “configurable ASIC”, or cASIC.

Like RaPiD [2][14], the cASIC architectures we create are very coarse-grained,

consisting of optimized components such as multipliers and adders. Unlike RaPiD, cASICs do

not have a highly flexible interconnection network — the only wires and multiplexers available

are those which are required by the netlists. This is because cASICs are designed for a specific

set of netlists, and are not intended to implement netlists beyond the specification. In fact, unless

a circuit is from the specified input set, or extremely similar to one of the circuits in the set, it

unlikely to be implementable in the generated hardware. This hardware is intended to be

optimized to the exact circuits in the specification, and to be an alternative to a set of separate

ASIC circuit structures.

Hardware resources are still controlled in part by configuration bits, though there are

much fewer present than in an FPGA. In particular, they are used to control any multiplexers on

the inputs of logic units, as well as ALU modes. These configuration bits allow for hardware

reuse among the specification netlists. Each netlist in the specification is implemented in turn by

programming these bits with the appropriate set of values.

 8

The cASIC architecture generation occurs in two distinct phases. In the logic stage of the

generation the computation needs of the algorithms are determined, the computational

components (ALUs, RAMs, multipliers, registers, etc) are created, and the physical elements are

ordered along the one-dimensional datapath. Also, the netlist instances must be bound to the

physical components. In the routing stage, wires and multiplexers are created to connect the

different logic and I/O components.

3.1. Logic Generation

The generation of logic structures for cASIC architectures involves first determining the

type and quantity of functional units required to implement the given netlists. Because the

ability to reuse hardware is a key feature of reconfigurable computing, maximum hardware reuse

between netlists is ensured. The minimum number of total logic units is chosen such that any

one of the netlists given as part of the architectural specification can operate in its entirety. In

other words, unit use within a netlist is not modified or rescheduled. Therefore, if netlist A uses

12 multipliers and 16 ALUs, while netlist B uses 4 multipliers and 24 ALUs, a cASIC

architecture designed for these two netlists would have 12 multipliers and 24 ALUs. If a

designer were to require some flexibility in the design beyond the minimum, additional units

could be added. However, this would defeat the purpose of the minimalist cASIC. Techniques

from the Totem Project to generate more flexible domain-specific reconfigurable hardware have

been published elsewhere [17].

After the unit quantities and types have been selected, they must be arranged along the

horizontal axis. A good ordering will ensure that the number of signals passing through any one

 9

vertical cut of the architecture is kept low, which reduces the area consumed by the routing

structures. Similarly, units communicating with one another should be located in close

proximity to reduce the delay on the wires between them. Therefore, the best physical ordering

of the units depends on the communication between them. The communication needs between

physical units, however, depend on how the netlists are implemented on that hardware.

Although this specific work targets a 1D architecture, we will later discuss extensions to support

2D designs.

Before discussing the positioning of logic resources further, we must define some key

terminology. The architectural components represent physical structures to be created in silicon.

These differ from netlist instances, which are implemented by the physical components. A

netlist instance represents a “need” for a given type of computation at a given point of the circuit.

In traditional FPGAs, the LUTs are the physical components, while the netlist instances are low-

level gates or small logic functions. In the Totem Project, coarser-grained architectures and

netlists are currently used. For example, a multiply-accumulate netlist contains a multiplier

instance followed by adder and register instances. These instances must be implemented by the

appropriate type of physical components in the hardware.

 10

2

4
1

3

A B C D E A
1

B
2

C
4

D E
3

netlist
(instances)

components

2

4
1

3

A B C D E A
1

B
2

C
4

D E
3

netlist
(instances)

components

(a)

A B C D E D C A E B

components

A B C D E D C A E B

components

(b)

Figure 2: Binding vs. physical moves. (a) Binding assigns instances of a netlist to physical components.

(b) Physical moves reposition the physical components themselves.

There may be multiple units appropriate for a circuit instance, in which case the instance

must be matched to a specific physical unit. When using traditional FPGAs, this matching is

referred to as placement or binding. For this work, the terms binding or mapping are used to

describe the process of matching an instance to a component. A physical move describes the act

of assigning a physical location to a physical component. Figure 2 illustrates the difference

between binding and placement. Using this terminology, traditional synthesis for FPGAs

requires only bindings, whereas synthesis for standard cells involves only physical moves.

Reconfigurable architecture generation is a unique situation in which both binding and

physical moves must be considered. The locations of the physical units must be known in order

to find the best binding, and the binding must be known to find the best physical moves. Since

these processes are inter-related, both binding and physical moves are performed simultaneously

in this work. The term placement in Totem architecture generation refers to the combined

process of determining a binding of netlists to units and determining physical locations for the

units.

 11

Placement during cASIC generation utilizes a simulated annealing algorithm, which is

commonly used in FPGA placement (binding) to assign netlist instances to physical computation

units, and standard cell placement to determine locations for actual physical cells. This

algorithm operates by taking a random initial placement of elements, and repeatedly attempts to

move the location of a randomly selected element. The move is accepted if it improves the

overall cost of the placement. To avoid settling in a local minima of the placement space, moves

that do not improve the cost of the placement are sometimes accepted. The probability of

accepting a non-improving move is governed by the current “temperature”. At the beginning of

the algorithm, the temperature is high, allowing a large proportion of bad moves to be accepted.

As the algorithm progresses, the temperature decreases, and therefore the probability of

accepting a bad move also decreases. At the end of the algorithm almost no bad moves are

permitted.

In the Totem architecture generation, simulated annealing performs both the binding and

physical moves simultaneously. Therefore, a “move” can be either of these two possibilities –

either rebinding a netlist computational instance from one physical unit to another compatible

physical unit, or changing the position (ordering) along the 1D axis of a computational

component.

IN1

IN2 OUT
0

X +

IN1

IN2 OUT
0

XX ++

IN1

OUT
IN2

X X
+

IN1

OUT
IN2

XX XX
++

Figure 3: Two different example netlists that could be used in architecture generation. The light netlist

performs a multiply-accumulate (MAC), while the dark netlist is a 2-tap FIR filter. These two netlists are

used in the example placement process given in the next few figures.

 12

In order to create a single architecture optimized for all of the target netlists, we perform

placement and binding of all netlists simultaneously using a modified simulated annealing

algorithm. The instances of each netlist are arbitrarily assigned initial bindings to physical

components, which are ordered arbitrarily along the 1D axis. An example initial placement

created for the two netlists presented in Figure 3 appears in Figure 4. Next, a series of moves is

used to improve the placement. However, for cASIC generation, there are two different types of

moves that can be attempted within the simulated annealing algorithm: rebinding and physical

moves. The probability of attempting a rebinding when making a simulated annealing move is

equal to the number of netlist instances divided by the sum of the netlist instances and physical

components. In other words, the ratio of the physical moves to the binding moves is the same as

the ratio of physical components to netlist instances.

OUT

0

IN1

IN2

OUT

IN2
IN1

++XX XX

Initial Placement

Figure 4: The initial physical placement and bindings of an architecture created for the netlists of Figure 3.

Color shading indicates component use by the netlists. Only one netlist can be active at a time.

OUT0

IN1
IN2

OUT
IN2
IN1

++XXXX

Final Placement

Figure 5: The final placement of the architecture created for the netlists from Figure 3. The signal cross-

section has been greatly reduced from the initial placement shown in Figure 4.

The cost metric is based on the cross-section of signals communicating between the

bound instances. At each physical unit location the cross-section of signals for each netlist is

determined. The maximum across the netlists becomes the overall cross-section value at that

 13

point. After the cross-section value is calculated for each location, the values are squared, then

summed across the locations to yield the overall cost value. By squaring the values before

summing across positions, areas with a high cross-section are heavily penalized. The goal in

reducing these cross-sections is primarily to minimize the area of the routing structure that will

be created, because a larger cross-section can lead to a taller architecture. A secondary goal is to

decrease the delay of the nets, because the longer (and slower) a wire is, the more likely it is to

share a span with other wires and contribute to a larger cross-section.

The guidelines presented for VPR [18], a place and route tool for FPGAs, govern the

initial temperature calculation, number of moves per temperature, and cooling schedule. These

values are based on Nblocks, the number of “blocks” in a netlist. Since both netlist instances and

physical components are being used, Nblocks is calculated as the sum of the instances in each

netlist provided plus the number of physical components created. The initial temperature and

number of moves per temperature are derived from this value. The cooling schedule specified by

VPR is also used, where the new temperature Tnew is calculated according to the percentage of

moves that were accepted (Raccept) at the old temperature Told.

3.2. Routing Generation

While RaPiD uses a series of regular routing tracks, multiplexers, and demultiplexers to

connect the units, cASIC architectures provide a more specialized communication structure. The

only routing resources included are those which are explicitly required by one or more of the

netlists. This section discusses the different techniques developed to create the routing

structures. The routing structure of a custom generated architecture will depend on the

 14

placement achieved using the techniques of section 3.1. At this point, the physical locations of

the components are fixed, as are the bindings of the netlist instances to those components. The

specification netlists define the signals that connect the netlist instances to form a circuit. These

instances have been bound in the placement stage, so the physical locations of the ports of the

signals are known. Wires are then created to implement these signals, allowing each netlist to

execute individually on the custom hardware.

In addition to wires, we may create multiplexers and demultiplexers on the ports of the

components to accommodate the different requirements of the specification netlists. For

example, if netlist A needs an adder to output to a register, but netlist B needs the adder to output

to a RAM, a demultiplexer is instantiated on the output of the adder to direct the signals properly

for each netlist. Similarly, if netlist A has a register that receives an input from an adder, but

netlist B needs that register to input from a multiplier, a multiplexer is created to choose the

register input based on which netlist is currently active in the architecture. Figure 6 continues

the example in section 3.1, showing the generated routing structure for the placement of Figure

5. Note that several of the wires here are used to implement signals from both netlists. Like the

logic resources, the wires are only used by one netlist at a time — whichever netlist is currently

programmed onto the architecture. “Sharing” of routing resources between netlists is critical, as

the routing architecture can become extremely large if each signal is implemented by a dedicated

wire.

IN2
IN1

XXXX 0
OUT

++

Figure 6: cASIC routing architecture created for the example from section 3.1. Black wires are used by

both netlists of Figure 3, while the light and dark grey wires are only used by the corresponding netlist.

 15

The object of the routing generation phase is to minimize area by sharing wires between

netlists, while adding as few multiplexers and demultiplexers as necessary. Heuristics are used

to group signals with similar connections from different netlists into wires. In order to

understand the motivations for the algorithms presented below, the routing problem itself must

first be discussed. As with the placement problem, creating the routing is two problems

combined into one: creating the wires, and assigning of the signals to wires. In many current

FPGA architectures, wire lengths can be adjusted for each netlist by taking advantage of

programmable connections (segmentation points) between lengths of wire, potentially forming a

single long wire out of several short wires. For simplicity, the current Totem cASIC generation

algorithms do not provide this flexibility.

The algorithms must somehow determine which sets of signals belong together within a

wire. One method is to simply not share at all, which is explored in the No Sharing algorithm.

The remaining algorithms, Greedy, Bipartite and Clique, use heuristics to determine how the

wires should be shared between signals. The heuristics operate by placing signals with a high

degree of similarity together into the same wire. However, “similarity” can be computed several

different ways. In this work, two different definitions of “similarity” were used. Ports refers to

the number of input/output locations the signals or wires have in common. Overlap refers to a

common “span”, where the span of a signal or wire is bounded by the leftmost source or sink and

the rightmost source or sink in the placed architecture. Results for each of these similarity types

are given in section 4. The procedures used by the Greedy, Bipartite, and Clique heuristics are

described in the next sections.

 16

3.2.1. Greedy
The greedy algorithm operates by repeatedly merging wires that are very similar. To

begin, each signal is assigned to its own wire. Next, a list of correlations between all compatible

wire pairs (wires that are not both used in the same netlist) is created. The highest correlation

value is selected at each iteration, and those two wires are merged. All other correlations related

to either of the two wires that have been merged are updated according to the characteristics of

the new shared wire. If any of the correlations now contain a conflict due to the new attributes of

the merged wire (i.e., both wires in the correlation hold a signal from the same netlist), these

correlations are deleted from the list, as they are no longer valid. This process continues until the

correlation list is empty, and no further wires may be merged.

3.2.2. Bipartite
The merging of netlists into cASIC architectures is a form of matching problem. This

might naturally lead one to consider the use of bipartite matching to solve the problem. One

group has already used maximum weight bipartite matching to match netlist instances together to

form the components [19]. However, there are two significant problems with this approach. The

first is that this type of logic construction does not consider the physical locations of the

instances or their components. The physical locations of components and mapped instances

determines the length of wires needed to make the connections between units, and is therefore

critical to effective logic construction. Furthermore, although bipartite matching was used to

determine sharing of logic resources, the routing resources (wires) were not shared between

netlists at all using their technique.

 17

Second, the bipartite matching algorithm was used recursively, matching two netlists

together, then matching a third netlist to the existing matching, and so on. While any individual

matching can be guaranteed to have the maximum weight, the cumulative solution may not. The

order in which the netlists are matched can affect the quality of the final solution. This is true

even if bipartite matching is not used for the logic construction but only for routing construction.

X

Y K

L

A B
30

30 0

20

10
15

40

60

25

0

5

5

Example Graph

A

B

L

K
10

20
30

30

AL

BK

X

Y
20

45
60

25

Recursive Bipartite

X

Y K

L

A B
30

30 0

20

10
15

40

60

25

0

5

5

Total weight = 130

Figure 7: An example graph which does not produce the optimal solution when bipartite matching is used

recursively. At left is the original graph, the middle shows the two recursion steps, and at right is the

solution. The total weight is the weight of the edges completely contained by the grouping.

A cASIC generation algorithm was created which uses recursive maximum weight

bipartite matching, to compare with the proposed Clique proposed discussed in the next section.

Logic for these architectures is still constructed as discussed in section 3.1 because of the

location issue mentioned previously, but the merging of signals into wires is performed using a

bipartite matching algorithm.

3.2.3. Clique
The downside of the Greedy and Bipartite techniques is that they merge wires based on

short-term local benefits, without considering the problem as a whole. There may be cases

where merging the two most similar wires at one point prevents a more ideal merging later in the

 18

algorithm. Therefore, the Clique algorithm has been implemented to globally address the routing

creation problem.

Clique partitioning is a concept from graph algorithms whereby vertices are divided into

completely connected groups. In our algorithm each wire is represented by a vertex, and the

"groups", or cliques, represent physical wires. The algorithm uses a weighted-edge version of

clique partitioning to group highly correlated signals together into wires, where the correlation

value between signals is used as the edge weight. The cliques are then partitioned such that the

weight of the edges connecting vertices within the same clique is maximized. Signals that

cannot occupy the same wire (signals from the same netlist) carry an extremely large negative

weight that will prevent them from being assigned to the same clique. Therefore, although signal

A may be highly correlated with signal B, and signal B is highly correlated with signal C, they

will not all be placed into the same wire (clique) if signal A conflicts with signal C, due to the

large negative weight between those vertices. Figure 8 shows the clique partitioning solution to

the weighted-edge graph from the example of Figure 7.

X

Y K

L

A B
30

30 0

20

10
15

40

60

25

0

5

5

Example Graph

X

Y K

L

A B
30

30 0

20

10
15

40

60

25

0

5

5

Total weight = 180

Figure 8: An improved solution to the graph of Figure 7 found using clique partitioning. The nodes in this

graph represent the signals, and each clique (grouping) represents a wire shared by the vertices (signals) in

the cliques. The total weight is the sum of all edge weights completely contained within a clique.

 19

Given that weighted clique partitioning of a graph with both negative and positive edge

weights is NP-Complete, an ejection chain heuristic based on tabu search [20] is used. Vertices

are initially assigned to random cliques (where the number of cliques equals the number of

vertices). Some cliques are allowed to be empty, but all vertices must be assigned to a clique.

The algorithm then iteratively moves each vertex from its current clique to a different one. This

is done by each time selecting a non-tabu vertex and a new clique for that vertex that will

produce the maximum overall (not necessarily positive) gain in total weight for the graph. Once

a vertex is moved, it is marked tabu until the next iteration. After all the vertices have been

moved in an iteration, the list of cumulative solutions after each move is examined, and the one

with the highest total weight is chosen. This solution is then used as the base for the next

iteration of moves, and all vertices are marked non-tabu. This loop continues until none of the

cumulative solutions in an iteration produces a total weight greater than the base solution for that

iteration.

4. Results

Eight different applications (each composed of two or more netlists) were used to

compare the area results of the Totem architectures to a number of existing implementation

techniques, including standard cell, FPGA, and RaPiD techniques. These applications, along

with their member netlists, are listed in Table 1. Five of these are real applications used for

radar, OFDM, digital camera, speech recognition, and image processing. The remaining three

applications are sets of related netlists, such as a collection of different FIR filters. The netlists

were compiled from RaPiD-C by the RaPiD compiler.

 20

Table 1: Eight applications used to test Totem architectures, each containing two or more distinct netlists.

FIR, Matrix, and Sort are collections of similar netlists, while the others are actual applications.

Application Member Netlists
Radar decnsr, fft16_2nd, psd
OFDM sync, fft64

Camera color_interp, img_filt, med_filt
Speech log32, fft32, 1d_dct40

FIR firsm, firsm2, firsm3, firsymeven, firtm_1st, firtm_2nd
Matrix matmult, matmult4, matmult_bit, limited, limited2
Sort sort_g, sort_rb, sort_2d_g, sort_2d_rb

Image med_filt, matmult, firtm_2nd, fft16_2nd, 1d_dct40

4.1. Reference Implementations

The applications listed in Table 1 were implemented using standard cells, an FPGA, and

RaPiD. These three implementation types are used to provide comparative results used in

evaluation of the cASIC architectures. The following paragraphs describe the techniques used

for these three comparative implementation methods.

The standard cell layouts of the netlists (converted automatically from RaPiD netlist

format to structural Verilog) were created using Cadence in a TSMC 0.18µm process with 6

metal layers. Generally, the total area for an application set is the sum of the areas required for

the netlists. However, for the application sets which are a collection of very similar netlists (FIR,

Matrix, and Sort from Table 1), this assumption is likely to be incorrect. Therefore, to err on the

side of caution for these particular cases, the maximum area required by any one member netlist

is instead used, under the assumption that a small amount of additional control circuitry may

allow all member netlists to use the same hardware. I/O area is not included, as I/O area is also

not measured for the Totem architectures.

 21

The FPGA solution is based on the Xilinx Virtex-II FPGA, which uses a 0.15µm

8-metal-layer process, with transistors at 0.12µm [21]. In particular, the die area was obtained

for an XC2V1000 device [22]. This FPGA contains not only LUT-based logic (“slices”), but

also embedded RAM and multiplier units, in a proportion of (128 slices : 1 multiplier : 1 RAM).

This proportion of resources is used as a tileable atomic unit when determining required FPGA

area for the designs, as manually-designed FPGA cores for SoCs are unlikely to be very

customizable except in terms of the quantity of total tileable resources. The area of an individual

tile, which corresponds to approximately 25K system “gates” of logic, was computed (using a

photograph of the die) to be 1.141mm2. This area was then scaled to a 0.18µm process by

multiplying by (.15/.18)2 to yield a final tile size of 1.643mm2 to compare all solutions using the

same fabrication process. The Verilog files created from individual netlists were placed and

routed onto a Virtex-II chip, and the number of tiles required for the applications were measured.

In this case, the total area required by an application is the maximum of the areas required by its

member netlists, as the hardware resources are reusable.

The area required to implement the applications on a static RaPiD architecture [2][14]

was also calculated. The RaPiD results represent a partially-customized FPGA solution. The

RaPiD reconfigurable architecture was designed for the types of netlists used in this testing, and

contains specialized coarse-grained computational units used by those netlists. The number of

RaPiD cells can be varied, but the resource mix and routing structures within the cell is fixed.

To find the area for each application, the minimum number of RaPiD cells needed to

meet the logic requirements of the application was calculated. The application’s netlists were

then placed and routed onto the architecture to verify that enough routing resources were present.

If not, and the routing failed, the number of cells was increased by one until either all of the

 22

application’s netlists could successfully place and route, or place and route still failed with 20%

more cells than the application logic required.

Manual layouts of each of the units and routing structures were created in a TSMC

0.18µm process with 5 metal layers. The logic area is simply the sum of the areas of the logic

units in the architecture. Routing area is the sum of the areas of the multiplexers, demultiplexers,

and bus connectors (segmentation points) in the architecture. Routing tracks are directly over the

logic units in a higher layer of metal, and are therefore not counted as contributing to the area. In

some cases, the RaPiD architecture did not have sufficient routing resources to implement a

circuit. The RaPiD cell would have to be manually redesigned to fit these netlists. This

illustrates one of the primary benefits of an automatic architecture generator – provided enough

die area is allocated, a solution can always be created.

4.2. cASIC Implementations

For the cASIC architecture generation methods, the areas are computed based on the

manual layouts used for the RaPiD area calculation. Logic area is computed using the same

method, but the routing area is a more complex computation. Area used by multiplexers and

demultiplexers are again computed according to manual layouts. But unlike RaPiD, wire area

can add to the total area of the architecture. A wire cross-section of up to 24 can be routed

directly over the logic units, so as with RaPiD, this routing area is considered “free”. However,

when the routing cross-section is greater than 24, the additional cross-section adds to the height

of the architecture.

 23

Table 2: The areas of the routing structures created by the Bipartite generation methods using both the ports

and the overlap methods. All possible orderings of the netlists were considered, and the minimum,

average, and maximum areas are given. The percent difference between the minimum and maximum areas

is also given.

Radar OFDM Camera Speech FIR Matrix Sort Image
Netlists 3 2 3 2 6 5 4 5
Ports Min 0.075 0.731 0.958 0.476 0.520 0.093 0.183 0.573
Ports Avg 0.076 0.731 0.959 0.476 0.582 0.094 0.185 0.582
Ports Max 0.077 0.731 0.959 0.476 0.629 0.097 0.187 0.589

% Diff 2.273 0.000 0.089 0.000 20.914 4.587 2.337 2.780
Overlap Min 0.093 0.429 0.301 0.371 0.247 0.131 0.248 0.573
Overlap Avg 0.094 0.429 0.305 0.373 0.263 0.140 0.251 0.582
Overlap Max 0.094 0.429 0.307 0.374 0.273 0.145 0.255 0.589

% Diff 0.917 0.000 1.983 0.690 10.345 10.390 2.749 2.780

First, the Bipartite technique was examined to determine the effect of the order that

netlists are merged into the cumulative solution. Table 2 lists, for each application, the

minimum, average, and maximum areas across the solutions for each ordering of the netlists.

The percent difference between the minimum and maximum areas is also given. When there are

only two netlists, there is only one possible ordering, and the minimum and maximum values are

identical. However, these results indicate that for any cases with more than two netlists, the

ordering can affect the final area. For the circuit sets examined here with more than two netlists,

there is on average approximately a 4.5% difference in routing area between the best and the

worst orderings. However, in one case, the routing area varies by as much as 20%. Therefore,

this technique may not be appropriate for cases with more than two netlists.

Next we generated architectures using Greedy, Clique, and No Sharing techniques. The

No Sharing algorithm creates a separate wire for every signal—a completely different set of

wires is used depending on which netlist is in operation. This method is included to demonstrate

the importance of sharing routing resources between netlists. An area comparison of the tested

cASIC methods is given in Figure 9, which has been normalized to the area result of Clique

 24

Overlap (which on average produces the smallest architectures). Areas are listed for Greedy, the

average Bipartite case, and Clique, each with two categories: Ports, and Overlap. As stated

previously, Ports indicates that the similarity between signals is computed according to the

number of sources and sinks shared by those signals. Overlap indicates that the similarity is

computed according to common location and length of the signals.

cASIC Application Area (Normalized to Clique Overlap)

0.8

0.9

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

Radar OFDM Camera Speech FIR Matrix Sort Image

Application

N
or

m
al

iz
ed

 A
re

a

No Share
Greedy (P)
Greedy (O)
Clique (P)
Clique (O)
Bipartite (P)
Bipartite (O)

Figure 9: Comparative area results of the different cASIC routing generation algorithms, normalized to the

Clique Overlap result for each application. The Bipartite results given are the average across orderings.

As expected, all three heuristic techniques of both similarity types perform better than the

No Share algorithm for all applications. Generally, Clique performs better than the other

methods, with Clique Overlap on average 2% smaller than Bipartite Overlap, 6% smaller than

Bipartite Ports, and 13% smaller than Greedy Ports or Greedy Overlap. However, there is

clearly room for improvement of the weighting calculation used by the Clique Partitioning

 25

method, as both Greedy and the average Bipartite produce a smaller area in some situations.

Additionally, Clique sometimes performs better using Ports, and other times using Overlap.

Neither is consistently better than the other. An improved similarity (weight) calculation for the

Clique method should therefore incorporate both Ports and Overlap similarity techniques.

Table 3: The areas, in mm2, of the eight different applications from Table 1, as implemented in standard

cells, a Virtex-II, RaPiD, and the various cASIC techniques. A summary of these results appears in Table

4. Bipartite results are given for the minimum, maximum, and average over all netlist orderings.

Radar OFDM Camera Speech FIR Matrix Sort Image
Std. Cell Total 4.101 9.168 7.268 26.523 2.846 1.785 1.541 6.843
FPGA Total 19.719 59.157 23.006 78.877 26.292 19.719 26.292 19.719

Logic 2.838 --- --- 45.401 3.783 1.892 2.838 ---
Routing 2.158 --- --- 34.536 2.878 1.439 2.158 ---

Total 4.996 --- --- 79.937 6.661 3.331 4.996 ---
Logic 1.433 4.118 2.178 12.748 1.742 1.124 1.193 1.617

Routing 0.090 1.259 1.441 1.413 1.917 0.829 0.970 1.331
Total 1.523 5.377 3.619 14.161 3.658 1.952 2.163 2.947
Logic 1.433 4.118 2.178 12.748 1.742 1.124 1.193 1.617

Routing 0.089 0.938 0.973 0.493 1.011 0.385 0.462 0.664
Total 1.522 5.055 3.151 13.242 2.753 1.508 1.655 2.280
Logic 1.433 4.118 2.178 12.748 1.742 1.124 1.193 1.617

Routing 0.093 0.950 0.981 0.493 1.012 0.385 0.462 0.664
Total 1.526 5.068 3.159 13.242 2.754 1.508 1.655 2.281
Logic 1.433 4.118 2.178 12.748 1.742 1.124 1.193 1.617

Routing 0.078 0.909 0.842 0.622 0.752 0.090 0.236 0.716
Total 1.511 5.027 3.020 13.370 2.493 1.214 1.428 2.333
Logic 1.433 4.118 2.178 12.748 1.742 1.124 1.193 1.617

Routing 0.086 0.456 0.297 0.261 0.262 0.140 0.294 0.216
Total 1.520 4.574 2.475 13.010 2.004 1.264 1.487 1.833
Logic 1.433 4.118 2.178 12.748 1.742 1.124 1.193 1.617

Routing 0.075 0.731 0.958 0.476 0.520 0.093 0.183 0.573
Total 1.509 4.849 3.136 13.224 2.262 1.217 1.376 2.190
Logic 1.433 4.118 2.178 12.748 1.742 1.124 1.193 1.617

Routing 0.076 0.731 0.959 0.476 0.582 0.094 0.185 0.582
Total 1.509 4.849 3.136 13.224 2.324 1.218 1.378 2.199
Logic 1.433 4.118 2.178 12.748 1.742 1.124 1.193 1.617

Routing 0.077 0.731 0.959 0.476 0.629 0.097 0.187 0.589
Total 1.510 4.849 3.137 13.224 2.370 1.221 1.380 2.206
Logic 1.433 4.118 2.178 12.748 1.742 1.124 1.193 1.617

Routing 0.093 0.429 0.301 0.371 0.247 0.131 0.248 0.573
Total 1.526 4.547 2.479 13.120 1.989 1.255 1.441 2.190
Logic 1.433 4.118 2.178 12.748 1.742 1.124 1.193 1.617

Routing 0.094 0.429 0.305 0.373 0.263 0.140 0.251 0.582
Total 1.527 4.547 2.483 13.121 2.005 1.264 1.444 2.199
Logic 1.433 4.118 2.178 12.748 1.742 1.124 1.193 1.617

Routing 0.094 0.429 0.307 0.374 0.273 0.145 0.255 0.589
Total 1.527 4.547 2.485 13.122 2.015 1.269 1.448 2.206

Bipartite Max
Overlap

Clique
Ports

Clique
Overlap

Bipartite Min
Ports

Bipartite Avg
Ports

Bipartite Max
Ports

Bipartite Min
Overlap

Bipartite Avg
Overlap

RaPiD

No Share

Greedy
Ports

Greedy
Overlap

 26

Table 4: Area improvements calculated over the reference architectures, then averaged across all

applications. The Bipartite results are the average across netlist orderings.

Method Area Method Area Method Area
FPGA 0.20 Std Cells 2.34 Std Cells 7.20
RaPiD 0.48 FPGA 0.38 RaPiD 4.01

No Share 1.63 No Share 2.95 No Share 9.00
Greedy (P) 1.87 Greedy (P) 3.39 Greedy (P) 10.63
Greedy (O) 1.87 Greedy (O) 3.39 Greedy (O) 10.62
Clique (P) 1.94 Clique (P) 3.64 Clique (P) 11.50
Clique (O) 2.16 Clique (O) 3.75 Clique (O) 12.30

Bipartite (P) 1.98 Bipartite (P) 3.72 Bipartite (P) 11.77
Bipartite (O) 2.08 Bipartite (O) 3.76 Bipartite (O) 12.14

Improvement
Over Std. Cells

Improvement
Over RaPiD

Improvement
Over FPGA

Table 3 gives the areas found by the different cASIC routing generation algorithms, with

the corresponding standard cell, FPGA, and RaPiD areas listed for comparison. These results are

summarized in Table 4. As these tables indicate, cASIC architectures are significantly smaller

than the corresponding FPGA area for the same netlists. The heuristics range on average from a

10.6x improvement to a 12.3x improvement in area, while even the No Sharing algorithm results

in a 9x improvement. FPGAs without custom embedded multipliers and RAMs would be

expected to require even more area than the Virtex-II for these applications. The Virtex-II here

is only a factor of 7.2x larger than standard cells, whereas with older homogenous FPGAs,

implementations were generally assumed to be 1-2 orders of magnitude larger.

Comparisons of cASIC techniques to RaPiD also yield favorable results, with area

improvements of 3.4x to 3.8x for the cASIC heuristics. These applications were created for

RaPiD, and RaPiD has been hand-optimized for DSP-type operations, which make it more

efficient (2.8x smaller) than a generic FPGA for these applications.

Finally, the cASIC heuristic methods also created architectures on average half the size of

standard cell implementations of the applications. One of the reasons the cASIC architectures

 27

are able to achieve such small areas is because the tools use full-custom layouts for the

computation blocks. The FIR, Matrix, and Sort architectures demonstrate the value of the full-

custom units. In these applications, the standard cell area is estimated to be the size of the largest

member netlist (as explained in section 4.1) to give standard cell design the benefit of the doubt.

Even with the overhead of adding reconfigurability, these cASIC area results are close to or

slightly better than the standard cell implementation. Using a library of coarse units in

conjunction with a standard cell synthesis tool would, of course, improve the standard cell

results.

However, the largest benefits occur in the cases where an application has several

differently-structured netlists, and a separate circuit must be created for each member netlist in a

standard cell implementation. By reusing components for different netlists, the cASIC

architectures achieve areas on the order of a full-custom implementation (generally assumed 2-

3x smaller than standard cells). While the use of library components in these cases would

decrease the standard cell area to some extent, it would not solve the problem of hardware reuse.

The cASIC method of architecture creation therefore has significant area benefits for

situations in which standard cells are generally considered instead of FPGAs for efficiency

reasons. Finally, a full-custom manual layout could be created for these applications that might

be smaller than the cASIC architectures. However, this would require considerably more design

time, which can be quite expensive, and may not always be possible due to production deadlines.

 28

5. Future Directions

As mentioned previously, the current cASIC tools are limited to customized 1D RaPiD-

style datapaths. However, this limitation is an implementation detail, not a necessity for the idea

or techniques themselves. Expanding this process to 2D would require augmenting the

placement process to use a 2D grid, an easy modification. Routing would become slightly more

difficult, but could be accomplished using maze routing techniques. It is possible that empty

spaces would need to be inserted to accommodate bends in wires, but we would expect this to

cause at most a minor increase in area given that the routing structure is very limited in cASICs.

The techniques described could also target different netlist types and logic types beyond

what is supported by the RaPiD hardware and netlists. This would require creating manual

layouts of the new logic units. The majority of the cASIC tool would remain unchanged, as it

was written in a very parameterized manner. The only potential difficulty would be if the logic

units were not of a uniform height. In this case, macro-cell placement techniques would be

employed to achieve an efficient layout.

Finally, the architectures could be generated with a little additional flexibility in an effort

to allow for minor changes to the specified circuit set. This could be accomplished by increasing

the size of the multiplexers on the logic unit inputs by a set percent, or to a set size. Routing

tracks could then be added to allow routing flexibility. In this case, a flexible router such as

Independence [23] could be used to map new circuits to the hardware. However, at this point we

are no longer performing the task targeted by this article. The design would then approach a

domain-flexible architecture in style, and we suggest that other architecture generation

techniques designed for flexible domain-specific architectures would be more appropriate [17].

 29

6. Conclusions

This article described the cASIC style of architecture, and presented three different

heuristics to create these designs. The first uses a greedy approach, the second uses recursive

maximum weight bipartite matching, while the third uses a more sophisticated graph-based

algorithm called clique partitioning to merge groups of similar signals into wires. Two different

methods to measure this signal similarity were discussed, one based on the common ports of the

signals, and the other based on the common span (overlap). The results indicate that a better

similarity measurement would be a combination of the two, incorporating both ports and signal

overlap.

The area comparison also demonstrates the inefficiencies introduced by the flexibility of

FPGAs. While the generic structure is critical for implementing as wide a variety of circuits as

possible, it is that flexibility that causes it to require 12x more area than a cASIC architecture.

The Virtex-II FPGA does, however, perform much better than earlier FPGA designs, at least in

part due to the use of coarse-grained multiplier and RAM units. The RaPiD architecture extends

the use of coarse-grained units to the entire architecture, but is customized to DSP as a whole. If

the application set is only a subset of DSP, further optimization opportunities exist, with cASIC

techniques achieving up to 3.8x area improvements over the RaPiD solution.

This article also demonstrated another key benefit cASIC generation has over the use of a

static architecture such as RaPiD. In cASIC generation, if enough area is allotted on the SoC die,

an architecture can be created for any set of netlists. On the other hand, the RaPiD resource mix

is fixed. For some applications, this structure may not have the correct logic mix for the

application, leading to copious wasted area. Alternately, a static structure may not provide a rich

 30

enough routing fabric, as was demonstrated by the failure of some applications to place and route

onto a RaPiD architecture. Finally, cASIC architectures have been created that are under half the

size of standard cell implementations of the desired application set. These area results indicate

that cASIC architecture design is not only an excellent alternative to FPGA structures when the

target circuits are known, but also a viable alternative to standard cell implementations.

7. References

[1] K. Compton, S. Hauck, “Reconfigurable Computing: A Survey of Systems and Software”, ACM
Computing Surveys, Vol. 34, No. 2. pp. 171-210, June 2002.

[2] C. Ebeling, D. C. Cronquist, P. Franklin, “RaPiD – Reconfigurable Pipelined Datapath.”, Lecture Notes in
Computer Science 1142—Field-Programmable Logic: Smart Applications, New Paradigms and Compilers,
R.W. Hartenstein, M. Glesner, Eds. Springer-Verlag, Berlin, Germany, pp. 126-135, 1996.

[3] S. C. Goldstein, H. Schmit, M. Budiu, S. Cadambi, M. Moe, R. Taylor, “PipeRench: A Reconfigurable
Architecture and Compiler”, IEEE Computer, Vol. 33, No. 4, pp. 70-77, 2000.

[4] A. Abnous, J. Rabaey, “Ultra-Low-Power Domain-Specific Multimedia Processors”, Proceedings of the
IEEE VLSI Signal Processing Workshop, October 1996.

[5] Morpho Technologies, http://www.morphotech.com/

[6] Stretch, Inc., http://www.stretchinc.com/

[7] The Totem Project, http://www.ee.washington.edu/people/faculty/hauck/Totem/

[8] K. Compton, Architecture Generation of Customized Reconfigurable Hardware, Ph.D. Thesis,
Northwestern University, Dept. of ECE, 2003.

[9] K. Eguro, RaPiD-AES: Developing an Encryption-Specific FPGA Architecture, Master’s Thesis,
University of Washington, Dept. of EE, 2002.

[10] M. Holland, Automatic Creation of Product-Term Based Reconfigurable Architectures for System-on-a-
Chip, Ph.D. Thesis, University of Washington, Dept. of EE, 2005.

[11] S. Phillips, Automating Layout of Reconfigurable Subsystems for Systems-on-a-Chip, Ph.D. Thesis,
University of Washington, Dept. of EE, 2004.

[12] A. Sharma, Place and Route Techniques for FPGA Architecture Advancement, Ph.D. Thesis, University of
Washington, Dept. of EE, 2005.

 31

[13] K. Compton, S. Hauck, “Totem: Custom Reconfigurable Array Generation”, IEEE Symposium on FPGAs
for Custom Computing Machines, 2001.

[14] D. C. Cronquist, P. Franklin, C. Fisher, M. Figueroa, C. Ebeling, “Architecture Design of Reconfigurable
Pipelined Datapaths”, Twentieth Anniversary Conference on Advanced Re-search in VLSI, 1999.

[15] D. C. Cronquist, P. Franklin, S.G. Berg, C. Ebeling, “Specifying and Compiling Applications for RaPiD”,
IEEE Symposium on FPGAs for Custom Computing Machines, 1998.

[16] M. Scott, “The RaPiD Cell Structure”, Personal Communications, 2001.

[17] K. Compton, A. Sharma, S. Phillips, S. Hauck, "Flexible Routing Architecture Generation for Domain-
Specific Reconfigurable Subsystems", International Conference on Field Programmable Logic and
Applications, pp. 59-68, 2002.

[18] V. Betz, J. Rose, “VPR: A New Packing, Placement and Routing Tool for FPGA Research”, International
Workshop on Field Programmable Logic and Applications, pp. 213-222, 1997.

[19] Z. Huang, S. Malik, “Managing Dynamic Reconfiguration Overhead in Systems-on-a-Chip Design Using
Reconfigurable Datapaths and Optimized Interconnection Networks”, Conference of Design Automation
and Test in Europe (DATE), 2001.

[20] U. Dorndorf, E. Pesch, "Fast Clustering Algorithms", ORSA Journal on Computing, Vol. 6, No. 2, pp. 141-
152, 1994.

[21] Xilinx, Inc., Virtex™-II Platform FPGAs: Detailed Description. Xilinx, Inc., San Jose, CA, 2002.

[22] Chipworks, Inc., “Xilinx XC2V1000 Die Size And Photograph”, Chipworks, Inc., Ottawa, Canada, 2002.

[23] A. Sharma, C. Ebeling, S. Hauck, "Architecture-Adaptive Routability-Driven Placement for FPGAs",
International Symposium on Field-Programmable Logic and Applications, 2005.

