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Abstract  
Although run-time reconfigurable systems have been 
shown to achieve very high performance, the speedups 
over traditional microprocessor systems are limited by the 
cost of configuration of the hardware.  In this paper, we 
explore the idea of configuration caching, and create some 
of the first cache management algorithms for 
reconfigurable systems.  We present techniques to 
carefully manage the configurations present on the 
reconfigurable hardware throughout program execution.  
Through the use of the presented strategies, we show that 
the number of required reconfigurations is reduced, 
lowering the configuration overhead.  We extend these 
techniques to a number of different FPGA programming 
models, and develop both lower bound and realistic 
caching algorithms for these structures.  Our simulation 
results show about a factor of 5 overhead reduction can be 
achieved over the commercial FPGA structures. 

Introduction 
In recent years, coupled processor-FPGA systems have 
attracted a lot of attention because of their promise to 
deliver the high performance provided by reconfigurable 
hardware along with the flexibility of general purpose 
processors.  In such systems, portions of an application 
with repetitive logic and arithmetic computation are 
mapped to the reconfigurable hardware,  while the 
general-purpose processor handles other portions of the 
computation.   

For many applications, the systems need to be 
reconfigured frequently during run-time to exploit the full 
potential of using the reconfigurable hardware.  With the 
increase of size of FPGAs, it could take milliseconds to 
reconfigure devices such as Xilinx Virtex II.  Therefore, 
by reducing the reconfiguration overhead, the performance 
of the system is improved.  In recent years, much research 
has focused on techniques to reduce the configuration 
overhead.  Some of these techniques include configuration 
prefetching [Hauck98a] and configuration compression 
[Hauck98b, Li99].  In this paper, we exploit another 
approach called configuration caching that reduces the 
reconfiguration overhead by buffering configurations on 
the FPGA.   

Caching configurations on an FPGA is similar to caching 
instructions or data for a processor from main memory.  
Careful preservatrion of configurations on the array can 

avoid the expensive reprogramming process when a 
previously used configuration is again needed.  In 
configuration caching we view the area of the FPGA as a 
cache.  If this cache is large enough to hold more than one 
computation, configuration cache management techniques 
will be used to determine when configurations should be 
loaded and unloaded to best minimize the overall 
reconfiguration times.  However, the traditional caching 
approaches for general-purpose computational systems are 
unsuitable for the configuration caching for the following 
reasons: 

1) In general-purpose systems, the data loading latency 
is fixed because the cache block represents the atomic 
data transfer unit, while in coupled processor-FPGA 
systems, the loading latency of configurations may 
vary because of non-uniform configuration sizes.  
This variable latency factor could have a great impact 
on the effectiveness of caching approaches and 
therefore traditional memory caching approaches such 
as LRU are not suitable.  

2) Since the ratio of the average size of configurations to 
chip size is much larger than the ratio of the block size 
to the cache size, only a small number of 
configurations can be retained on the chip.  This 
makes the system more likely to suffer the thrashing 
problem, in which the configurations are excessively 
swapped between the configuration memory and the 
FPGA.  

Given the above limitations, the challenge in configuration 
caching is to accurately determine which configurations 
should remain on the chip and which should be replaced 
when a reconfiguration occurs.  An incorrect decision will 
fail to reduce the reconfiguration overhead and instead 
lead to a much higher overhead. The non-uniform 
configuration latency and the small number of 
configurations that can reside simultaneously on the chip 
increase the complexity of this decision.  Both the 
frequency and latency factors of configurations need to be 
considered to ensure the best reconfiguration overhead 
reduction.   

In addition, the different features of various FPGA 
programming models, such as the Single Context, the 
Multi-Context, and the Partial Run-Time Reconfigurable 
models (discussed in depth later) add complexity to 
configuration caching.  Specific properties of each FPGA 
model require unique caching algorithms.  Furthermore, 
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because of the different architectures and control 
structures, the computational capacities of the different 
models vary for a fixed area.  Some of the existing 
architectures treat their configuration memory as a cache.  
However, none of the research has done quantitative 
analysis or developed specific algorithms for different 
caching models.  In this paper, we will present a capacity 
analysis for three prevalent FPGA models and two new 
FPGA models.  Since each model has its unique 
architecture, there is not a single caching scheme that 
performs well for all models.  Therefore, we have 
developed effective caching algorithms for each model.  
These algorithms use either run-time information or 
profile information of the applications.  In order to verify 
the effectiveness of those realistic algorithms, We have 
also developed lower bound algorithms or near lower 
bound algorithms that utilize omniscient execution 
information of the applications.  

FPGA Models 
The three FPGA models mentioned previously, the Single 
Context FPGA, the Partial Run-Time Reconfigurable 
FPGA, and the Multi-Context FPGA, are the three 
dominant models for current run-time reconfigurable 
systems.  Before we further discuss these models, we first 
give definitions of following terms. 
RFUOP: The portions of an application that are executed 
on FPGA are referred as reconfigurable functional unit 
operation (RFUOPs).   

Context: A configuration memory store is referred as a 
context. Basically each context contains the set of 
programming bits for configuring logic and interconnect 
of entire device. 

Configuration: The sets of RFUOPs that fit in the context 
are referred as configurations.   

For a Single Context FPGA, the whole chip area must be 
reconfigured during each reconfiguration.  Even if only a 
small portion of the chip needs to reconfigure, the 
programming information for the whole chip is rewritten 
during the reconfiguration.  Intuitively, configuration 
caching for the Single Context model needs to allocate 
multiple RFUOPs that are likely to be accessed temporally 
near each other into a single context to minimize switching 
between configurations.  By configuring RFUOPs in 
groups, the reconfiguration latency can be amortized over 
the RFUOPs in a context.  Since the reconfiguration 
latency for a Single Context FPGA is fixed (based on the 
total amount of configuration memory in the device), 
minimizing the number of times the chip is reconfigured 
will minimize the reconfiguration overhead.   
Multi-Context FPGAs contain one logic and interconnect 
plane plus multiple memory planes where each memory 
plane contains the programming bits for configuring the 
logic and interconnect plane.  The structure of a 4-context 
FPGA is illustrated in Figure 1.  Multiple configurations 
can be stored on a device, however, only one configuration 

can be actively running at any given time.  During 
reconfiguration, the requested configuration can be loaded 
into any of the contexts.  The loading will not stop 
execution of the device unless the requested configuration 
needs to be active immediately.  The context containing 
the required configuration will be switched to control the 
logic and interconnect in one cycle.  Compared with the 
configuration loading latency, the single cycle 
configuration switching latency is negligible.  In this 
paper, we consider a Multi-Context model that cannot be 
partially reconfigured, thus every SRAM context can be 
viewed as a Single Context FPGA and the methods for 
allocating RFUOPs onto contexts for the Single Context 
FPGA could be applied.   
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Figure 1.  The structure of a 4-context FPGA 
[DeHon94] 

For the Partial Run-Time Reconfigurable (PRTR) FPGA, 
the area that is reconfigured is just the actual portion 
required by the new RFUOP, while the rest of the chip 
remains intact.  Unlike the configuration caching for the 
Single Context FPGA, where multiple RFUOPs are loaded 
to amortize the fixed reconfiguration latency, the 
configuration caching method for the PRTR is to load and 
retain RFUOPs that are required rather than to reconfigure 
the whole chip.  The overall reconfiguration overhead is 
the summation of the reconfiguration latency of the 
individual RFUOPs.  Compared to the Single Context 
FPGA, the PRTR FPGA provides more flexibility for 
performing reconfiguration.  
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Figure 2: An example illustrating the effect of 
defragmentation.  (a) The two small fragments 
are located between configurations, and neither of 
them is large enough to hold configuration 4.  (b) 
After defragmentation, RFUOP 4 can be loaded 
without replacing any of the three other 
configurations.  

Based on the PRTR devices, two new models will be 
discussed below.  In standard PRTR devices, RFUOPs are 
mapped to fixed locations in the array, and whenever they 
are loaded they must be mapped to that specific location.  
Therefore, current PRTR systems are likely to suffer a 
thrashing problem, if two or more frequently used 
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RFUOPs occupy overlapping locations in the array.  This 
could cause significant reconfiguration overhead as 
multiple RFUOPs with same location can be contained 
within a same loop.  Simply increasing the size of the chip 
will not alleviate this problem.  However, this problem can 
be solved by the Relocation model [Hauser97], which 
dynamically allocates the position of a configuration on 
the FPGA at run time instead of at compilation time.  
Another model, called the Relocation + Defragmentation 
model (R/D model) [Compton02], further improves the 
hardware utilization.  Similar to the fragments in the 
memory system, portions of chip area in the current PRTR 
devices could be wasted because they are too small to hold 
another RFUOP.  These small portions or fragments could 
represent a significant percentage of chip area.  In the R/D 
model, a special hardware unit called the Defragmentor 
can move RFUOPs within the chip such that the small 
unused portions are collected as a single large fragment.  
This can allow more RFUOPs to be retained on the chip, 
increasing the hardware utilization and thus reducing the 
reconfiguration overhead.  For example, Figure 2 shows 
three RFUOPs currently on the chip with two small 
fragments.  Without defragmentation, one of the three 
RFUOPs would have to be replaced when RFUOP 4 is 
loaded.  However, as shown in the right side of Figure 2, 
by pushing RFUOP 2 and 3 upward the defragmentor 
produces one single fragment that is large enough to hold 
RFUOP 4.  The previous three RFUOPs are still present, 
and therefore the reconfiguration overhead from reloading 
one of these configurations can be avoided.  

Experimental Setup 
In order to investigate the performance of configuration 
caching for the five different programming models 
presented in the last section, we develop a set of caching 
algorithms for each model.  To conduct the evaluation, An 
equal amount of hardware resources (in the form of overall 
area) is allocated to each model.  Because the architectures 
and programming structures of the models vary, the actual 
areas that devote to computation also vary.  Therefore, we 
compute the capacity of each model as the number of 
programming bits that can be implemented within the 
fixed chip area.  This in turn affects the number and size of 
RFUOPs that can fit simultaneously on the different FPGA 
models.  Once the capacity of each model is determined, 
we will perform 2 more steps.  First, we test the 
performance of the algorithms for each model by 
generating a sequence of configuration accesses from an 
execution profile of each benchmark.  Second, for each 
model, caching algorithms are executed on the 
configuration access sequence, and the configuration 
overhead for each algorithm is measured. 

Capacity analysis 

We created VLSI layouts for the programming structures 
of each of the different FPGA types: the Single Context, 
the Partial Run-Time Reconfigurable, the Multi-Context, 
the Relocation FPGA, and the Relocation FPGA and R/D 

FPGA.  These area models are based on the size of tileable 
structures that comprise each programming architecture.  
This layout was performed using the Magic tool, and sizes 
(in λ2) were obtained for the tiles.  

The Single-Context FPGA model is built from shift chains 
or RAM structures.  The PRTR FPGA, however, requires 
more complex hardware.  The programming bits are held 
in 5-transistor SRAM cells, which form a memory array 
similar to traditional RAM structures.  Row decoders and 
column decoders are necessary to selectively write to the 
SRAM cells.  Large output tristate drivers are also 
required near the column decoder to magnify the weak 
signals provided by the SRAM cells when reading the 
configuration data off of the array.  The Multi-Context 
FPGA is based on a previously published design 
[Trimberger97].  We use a four-context design in our 
representation of a Multi-Context device, where each 
context is similar to a programming structure of a Single-
Context FPGA.  A few extra transistors and a latch per 
active programming bit are required to select between the 
four contexts for programming and execution.  
Additionally, a context decoder must be added to 
determine which of those transistors should be enabled. 

The two variants on the PRTR FPGA, the Relocation 
FPGA and the R/D FPGA, require a short discussion on 
their basic structure.  Both of these designs are one-
dimensional row-based models, similar to Chimaera 
[Hauck97], PipeRench [Goldstein99], DISC [Writhlin95], 
and Garp [Hauser97].  In this type of FPGA, a full row of 
computational structures is the atomic unit used when 
creating an RFUOP: RFUOPs may use one or more rows, 
but any row used by one RFUOP becomes unavailable to 
other RFUOPs.  While a two-dimensional model could 
improve the configuration density, the extra hardware 
required and the complexities of two-dimensional 
placement limits the benefits gained through the use of the 
model. 

The PRTR design forms the basis of the Relocation FPGA.  
A small adder and a small register, both equal in width to 
the number of address bits for the row address of the 
configuration memory array, were added for the new 
design.  This allows all configurations to be generated 
such that the "uppermost" row address is 0.  Relocating the 
configuration is therefore as simple as loading an offset 
into the offset register, and adding this offset to the row 
addresses supplied when loading a configuration. 

Finally, the R/D FPGA [Compton02] is similar to the 
PRTR with Relocation, with the addition of a row-sized 
set of SRAM cells that form a buffer between the input of 
the programming information and the configuration 
memory array itself.  A full row of programming 
information can be read back into this buffer from the 
array, and then written back to the array in a different 
position as dictated by the offset register.  In order to make 
this operation efficient, an additional offset register and a 
2:1 multiplexer to choose between the offset registers are 
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added.  This provides one offset for the reading of 
configuration data from the array, and a separate one for 
writing the information back to a new location.  This 
buffer requires its own decoder, since it is composed of 
several data words and is addressable.  The column 
decoder connected to the main array in the basic PRTR 
design necessary, as the information written from the 
buffer to the array is the full width of the array.  This 
structure is similar to an architecture proposed by Xilinx 
[Trimberger95]; and used in Virtex devices [Virtex99]. 

In order to account for the size of the logic and 
interconnect in these FPGAs, we use the assumption that 
the programming layer of a Single Context FPGA uses 
approximately 25% of the area of the chip.  All other 
models are assumed to require this same logic and 
interconnect area per bit of configuration.  See Appendix I 
for calculation details. 

As mentioned before, all models are given the same total 
silicon area.  However, due to the differences in the 
configuration structures, the number of programming bits, 
and thus the capacity of the device, varies among our 
models.  For example, according to Appendix I, a Multi-
Context model with 1 Megabit of active configuration 
information and 3 Megabits of inactive information has 
same area as a PRTR with 2.4 Megabits of configuration 
information.  Thus the PRTR devices has 2.4 times as 
many logic blocks as the Multi-Context device. 

Configuration Sequence Generation  

We use two sets of benchmarks to evaluate our caching 
algorithms for the various FPGA configuration models.  
One set of benchmarks was compiled and mapped to the 
Garp architecture [Hauser97], where the compute-
intensive loops of C programs are extracted automatically 
for acceleration on a tightly-coupled dynamically 
reconfigurable coprocessor [Callahan99].  The other set of 
benchmarks was created for the Chimera architecture 
[Hauck97].  In this system, portions of the code that can 
accelerate computation are mapped to the reconfigurable 
coprocessor [Hauck98a].  In order to evaluate the 
algorithms for different FPGA models, we need to create 
an RFUOP access trace for each benchmark, which is 
similar to a memory access string used for memory 
evaluation.  

The RFUOP sequence for each benchmark was generated 
by simulating the execution of the benchmark.  During the 
simulated execution, the RFUOP ID is output when an 
RFUOP is encountered.  After the completion of the 
execution, an ordered sequence of the execution of 
RFUOPs is created.  In the Garp architecture, each 
RFUOP in the benchmark programs has size information 
in term of number of rows occupied.  For Chimaera, we 
assume that the size of an RFUOP is proportional to the 
number of instructions mapped to that RFUOP.   

Configuration Caching Algorithms 
In this work, we seek to find caching methods that target 
the different FPGA models.  For each FPGA model, we 
will develop realistic algorithms that can significantly 
reduce the reconfiguration latencies.  In order to evaluate 
the performance of these realistic algorithms, we also 
attempt to develop tight lower bound algorithms by using 
complete application execution information.  Notice that 
the complete execution information is not available at run 
time for the realistic algorithms.  For the models where 
true lower bound algorithms are unavailable we will 
develop algorithms that we believe are near optimal. 

We divide our algorithms into 3 categories: run time 
algorithms, general off-line algorithms, and complete 
prediction algorithms.  The classification of the algorithms 
depends on the time complexity and input information 
needed for each algorithm. 

The run time algorithms use only basic information on the 
execution of the program up to that point, and thus must 
make guesses as to the future behavior of the program.  
This is similar to run time cache management algorithms 
such as LRU.  Because of the limited information at run 
time, a prediction of keeping a configuration or replacing a 
configuration may not be correct and can even cause 
higher reconfiguration overhead.  Therefore, we believe 
that these realistic algorithms will provide a tight upper 
bound on reconfiguration overhead.  

The complete prediction algorithms use entire execution 
information of the application, and can use 
computationally expensive approaches.  These algorithms 
attempt to search the whole execution stream in order to 
lower the configuration overhead.  These provide the 
optimal (lower bound) or near optimal solution.  In some 
cases these algorithms relax restrictions on system 
behavior in order to make the algorithm a true (but 
unachieveable) lower bound. 

The general off-line algorithms use profile information of 
each application, with computationally tractable 
algorithms.  They represent realistic algorithms for the 
case where static execution information is available, or 
approximate algorithms where highly accurate execution 
predictions can be developed.  These algorithms will 
typically perform between the run time and complete 
prediction algorithms in terms of quality, and are realistic 
for some situations.   

With these three classes of algorithms, we can get upper 
bounds (the run time algorithms) and lower bounds (the 
complete prediction algorithms), as well as an estimate of 
behavior for executions without data-dependent execution 
(the general off-line algorithms). 

Single Context Algorithms 
In the next two sections we present a near lower bound 
algorithm based on simulated annealing, and a more 
realistic general off-line algorithm, which uses more 
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restricted information.  Note that since there are no run-
time decisions in a single context device (if a needed 
configuration is not loaded the only possible behavior is to 
overwrite all currently loaded configurations with the 
required configuration), we do not present a run-time 
algorithm. 

Simulated Annealing Alg. for Single Context FPGA 

When a reconfiguration occurs in a Single Context FPGA, 
even if only a portion of the chip needs to be reconfigured, 
the entire configuration memory store will be rewritten.  
Because of this property, multiple RFUOPs should be 
configured together onto the chip.  In this manner, during a 
reconfiguration a group (context) that contains the 
currently required RFUOP, as well as possibly one or 
more later required RFUOPs, is loaded.  This amortizes 
the configuration time over all of the RFUOPs grouped 
into a context.  Minimizing the number of group (context) 
loadings will minimize the overall reconfiguration 
overhead.  

The method used for grouping has a great impact on the 
latency reduction as the overall reconfiguration overhead 
resulted from a good grouping could be much smaller than 
that resulting from a bad grouping.  For example, suppose 
there are 4 RFUOPs with equal size and equal 
configuration latency for a computation, and the RFUOP 
sequence is 1 2 3 4 3 4 2 1, where 1, 2, 3, and 4 are the 
RFUOP IDs.  Given a Single Context FPGA that has the 
capacity to hold two RFUOPs, the number of context loads 
is 3 if RFUOPs 1 and 2 are placed in the same group 
(context), and RFUOPs 3 and 4 are placed in another.  
However, if RFUOPs 1 and 3 are placed in the same group 
(context) and RFUOPs 2 and 4 are placed in the other, the 
number of context loads will be 7. 

In order to create the optimal solution for grouping, one 
simple method is to create all combinations of RFUOPs 
and then compute reconfiguration latency for all possible 
groupings, from which an optimal solution can be found.  
However, this method has exponential time complexity, 
and is therefore not applicable for real applications.  In this 
paper, we instead use a simulated annealing approach to 
acquire a near optimal solution.  For the simulated 
annealing algorithm, we use the exact reconfiguration 
overhead for a given grouping as our cost function, and the 
moves consist of shuffling the different RFUOPs between 
contexts.  Specifically, at each step an RFUOP is 
randomly picked to move to a randomly selected group, 
and if there is not enough room in that group to hold the 
RFUOP, RFUOPs in that group are randomly chosen to 
move to other groups.  Once finished, the reconfiguration 
overhead of the grouping is computed by applying the 
complete RFUOP sequence. 

General Off-line Alg. for Single Context FPGA 

Although the simulated annealing approach can generate a 
near optimal solution, the high computation complexity 
and the exact execution sequence make this solution 

unreasonable for most real applications.  We therefore 
propose an algorithm more suited for general purpose use.  
The Single Context FPGA requires that the whole 
configuration memory will be rewritten if a demanded 
RFUOP is not currently on the chip.  Therefore, if two 
consecutive RFUOPs are not allocated to the same group, 
a reconfiguration will result.  Our algorithm attempts to 
compute the likelihood of RFUOPs following one another 
in sequence, and use this knowledge to minimize the 
number of reconfigurations required.  Before we further 
discuss this algorithm, we first give the definition of a 
“correlate” as used in the algorithm.   

Definition 1: Given two RFUOPs and an RFUOP 
sequence, RFUOP A is said to correlate to RFUOP B if in 
the RFUOP sequence there exists any consecutive 
appearance of A and B.   

For the Single Context FPGA, highly correlated RFUOPs 
are allocated into the same group.  Therefore the number 
of times a context is loaded is greatly decreased, and thus 
the reconfiguration overhead is minimized.  In our 
algorithm, we first build an adjacency matrix of RFUOPs.  
Instead of using 0 or 1 as a general adjacency matrix does, 
the degree of correlation of every RFUOP pairs (the 
number of times two RFUOPs are next to each other) is 
recorded.  These correlations could be estimated from 
expected behavior or determined via profiling.  The details 
of our grouping algorithm are as follows: 
1. Create COR, where COR[I, J]= number of times 

RFUOP I correlates to J 
2. While any A[I, J] > 0, do  

2.1 Find I, J such that COR[I, J] + COR[J, I] is 
maximized 

2.2 If SIZE[I] + SIZE[J] <= Maximum Context Size 
2.2.1. Merge Group I and group J, and add 

together sizes 
2.2.2. Foreach group K other than I and J  

2.2.2.1. A[I, K] += A[J, K]; A[K, I] += 
A[K, J]; 

2.2.2.2. A[J, K] = 0; A[K, J] = 0; 
2.3 A[I, J] = 0; A[J, I] = 0; 

Figure 3 illustrates an example of the general off-line 
algorithm.  Each line connects a pair of correlated 
RFUOPs and the number next to each line indicates the 
degree of the correlation.  As presented in the algorithm, 
we will merge the highly correlated groups together under 
the size constraints of the target architecture.  In this 
example, assume that the chip can only retain at most 3 
RFUOPs at a time, although in reality this depends on the 
sizes of the RFUOPs.  At the first grouping step we place 
RFUOP17 and RFUOP4 together.  In the 2nd step we add 
RFUOP43 into the group formed at step 1, since it has a 
correlation of 30 (15+15) to that group.  We then group 
RFUOP2 and RFUOP34 together in step 3, and they 
cannot be merged with the previous group because of the 
size restriction.  Finally, in the 4th step RFUOP22 and 
RFUOP68 are grouped together.   
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Figure 3: An example to illustrate the general off-

line algorithm for Single Context FPGA. 

Compared to the simulated annealing algorithm, this 
algorithm only requires profile information on the degrees 
of correlation between RFUOPs.  In addition, since the 
number of RFUOPs tends to be much smaller than the 
length of the RFUOP sequence, it should be much quicker 
to find a grouping by searching the correlation matrix 
instead of traversing the RFUOP sequence as the 
simulated annealing algorithm does.  Therefore, the 
computation time is significantly reduced. 

Multi-Context Algorithms 
In this section we present algorithms for multi-context 
devices.  This includes a complete prediction algorithm 
that represents a near lower bound, and a general offline 
algorithm that couples the single-context general offline 
algorithm with a run-time replacement policy.   

Complete Prediction Alg. for Multi-Context FPGA 

A Multi-Context FPGA can be regarded as multiple Single 
Context FPGAs, since the atomic unit that must be 
transferred from the host processor to the FPGA is a full 
context.  During a reconfiguration, one of the inactive 
contexts is replaced.  In order to reduce the reconfiguration 
overhead, the number of reconfigurations must be reduced.  
The factors that could affect the number of 
reconfigurations are the configuration grouping method 
and the context replacement policies. 

We have discussed the importance of the grouping method 
for the Single Context FPGA, where an incorrect grouping 
may have significantly larger overhead than a good 
grouping.  This is also true for the Multi-Context FPGA, 
where a context (a group of configurations) remains the 
atomic reconfiguration data transfer unit.  The 
reconfiguration overhead caused by the incorrect grouping 
remains very high even though the flexibility provided by 
the Multi-Context FPGA can somewhat reduce part of the 
overhead.  

As mentioned previously, even the perfect grouping will 
not minimize the reconfiguration overhead if the policies 
used for context replacement are not considered.  A 
context replacement policy specifies which context should 
be replaced once a demanded configuration is present.  
Just as in the general caching problem where frequently 
used blocks should remain in the cache, the contexts that 

are frequently used should be kept configured on the chip.  
Furthermore, if the atomic configuration unit (context) is 
considered as a data block, we can view the Multi-Context 
FPGA as a general cache and apply standard cache 
algorithms.  More specifically, we can apply an existing 
optimal replacement algorithm called the Belady algorithm 
[Belady66] to the Multi-Context FPGA context 
replacement problem.   

The Belady algorithm is well known in the operating 
systems and computer architecture fields.  It states that the 
fewest number of replacements can be achieved provided 
the memory access sequence is known.  This algorithm is 
based on the idea that a data item is most likely to be 
replaced if it is least likely to be accessed in the near 
future.  For a Multi-Context FPGA, the optimal context 
replacement can be achieved as long as the context access 
string is available.  When the RFUOP sequence is known, 
it is trivial to create the context access string by 
transforming the RFUOP sequence.  We integrate the 
Belady algorithm into the simulated annealing grouping 
method used in the Single Context model to achieve the 
near optimal solution.  Specifically, for each grouping 
generated, the number of the context replacements 
determined by the Belady algorithm is calculated as the 
cost function of the simulated annealing approach.   

The reconfiguration overhead for a Multi-Context FPGA 
is therefore the number of context loads multiplied by the 
configuration latency for a single context.  As mentioned 
above, the factors that can affect the performance of 
configuration caching for the Multi-Context FPGA are the 
configuration grouping and the replacement policies.  
Since the optimal replacement algorithm is integrated into 
the simulated annealing approach, this algorithm will 
provide the near optimal solution.  We consider this 
algorithm to be a complete prediction algorithm. 

Least Recently Used (LRU) Alg. for Multi-Context 

The LRU algorithm is a widely used memory replacement 
algorithm in operating system and architecture.  Unlike the 
Belady algorithm, the LRU algorithm does not require 
future information to make a replacement decision.  
Because of the similarity between the configuration 
caching problem and the data caching problem, we can 
apply the LRU algorithm for the Multi-Context FPGA 
model.  The LRU is more realistic than the Belady 
algorithm, but the reconfiguration overhead incurred is 
higher.  The basic steps are outlined below: 

1. Apply the Single Context general off-line algorithm to 
acquire a final grouping of RFUOPs into contexts, and 
give each group formed its own ID. 

2. Traverse the RFUOP sequence, and for each RFUOP 
appearing, change the RFUOP ID to the 
corresponding group ID.  This will generate a context 
access sequence.   
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3. Apply the LRU algorithm to the context access string.  
Increase the total number of context loads by one 
when a replacement occurs.  

Algorithms. for PRTR FPGA 
An advantage that the PRTR FPGA has over the Single 
Context FPGA is greater flexibility of loading and 
retaining configurations.  Any time a reconfiguration 
occurs, instead of loading the whole group, only a portion 
of the chip is reconfigured while the other RFUOPs 
located elsewhere on the chip remain intact.  The basic 
idea of configuration caching for PRTR is to find the 
optimal location for each RFUOP.  This is to avoid the 
thrashing problem that could be caused if RFUOPs used 
frequently in succession occupy overlapping positions on 
the FPGA.  In order to reduce the reconfiguration 
overhead for the Partial Run-Time Reconfigurable FPGA, 
we need to consider two major factors: the reconfiguration 
frequency and the average latency of each RFUOP.  Any 
algorithm that attempts to lower only one factor will fail to 
produce an optimal solution because the reconfiguration 
overhead is the product of the two.  A complete prediction 
algorithm that can achieve near optimal solution and a 
general off-line algorithm that can significantly reduce the 
running time are presented below. 

Simulated Annealing Algorithm for PRTR FPGA 

Similar to the simulated annealing algorithm used for the 
Single Context FPGA, the purpose of annealing for the 
Partial Run-Time Reconfigurable FPGA is to find the 
mapping for each configuration such that the 
reconfiguration overhead is minimized.  For each step, a 
randomly selected RFUOP is assigned to a random 
position within the chip and the exact reconfiguration 
overhead is then computed.  

Alternate Simulated Annealing Algorithm for PRTR 

In the simulated annealing algorithm presented in the last 
section, the computation complexity is very high since the 
RFUOP sequence must be traversed to compute the overall 
reconfiguration overhead after every move.  To reduce the 
run time, we develop an alternative annealing algorithm 
that does not require to traverse the lengthy RFUOP 
sequence.  An adjacency matrix of size N×N, where N is 
the number of the RFUOPs, is built, to record the possible 
conflicts between RFUOPs.  In order to reduce the 
reconfiguration overhead, the conflicts that will create 
larger RFUOP loading latency are distributed to 
unoverlapped locations.  This is done by modifying the 
cost computation step of the previous algorithm.  Before 
presenting the alternate simulated annealing algorithm, we 
first give the definition of a “conflict” as used in our 
discussion. 

Definition 2: Given two configurations and their positions 
on the FPGA, RFUOP A is said to be in conflict with 
RFUOP B if any part of A overlaps with any part of B. 

We now present our simulated annealing algorithm for the 
PRTR FPGA. 

1. Create an N × N matrix, where N is the number of 
RFUOPs.  All values of A[i, j] are set to be 0, where 0 
≤ i, j ≤ N-1. 

2. Traverse the RFUOP sequence, for any RFUOP j that 
appears between two consecutive appearances of an 
RFUOP i, A[i, j] is increased by 1.  Notice that 
multiple appearances of an RFUOP j only count once 
between two consecutive appearances of an RFUOP. 

3. Assign a random position for each RFUOP.  An N × N 
adjacency matrix B is created.  

4. At each step of in the annealing, recalculate matrix B: 

4.1. A random selected RFUOP is reallocated to a 
random location within the chip.  After the 
move, if two RFUOPs i and j conflict, set B[i, j] 
and B[j, i] to be 1. 

4.2. For any B[i, j]=1, multiply the value of A[i, j] 
by the RFUOP loading latency of j.  The new 
cost is computed as the summation of the results 
of all the products.  

4.3. Accept the move based on the cost.   

Generally, the number of total RFUOPs is much less than 
the length of the RFUOP sequence.  Therefore, by looking 
up the conflict matrices instead of the whole configuration 
sequence, the time complexity can be greatly decreased.  
However, the quality of the algorithm may decrease 
because the matrix may not represent the conflicts exactly. 

Algorithms for R/D FPGA. 
For R/D FPGA, the replacement policies have a great 
impact on reducing the reconfiguration overhead.  This is 
because a high degree of flexibility is available in 
choosing victim RFUOPs when a reconfiguration is 
required.  With Relocation, an RFUOP can be dynamically 
remapped and loaded to an arbitrary position.  With 
defragmentation, a demanded RFUOP can be loaded as 
long as there is enough room on the chip, since the small 
fragments existing on the chip can be merged.  Instead of 
giving the algorithms for Relocation FPGA, we first 
analyze the case of R/D FPGA.  This includes a lower 
bound algorithm that relaxes the restriction in the system, 
a general off-line algorithm integrating the Belady 
algorithm, and two run time algorithms using different 
approaches. 

Lower Bound for R/D FPGA 

As discussed previously, the major problems that prevent 
us from acquiring an optimal solution of configuration 
caching are the different sizes and different loading 
latencies of different RFUOPs.  Generally, the loading 
latency of an RFUOP is proportional to the size of the 
configuration. 
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The Belady algorithm [Belady66] gives the optimal 
replacement for the case that the RFUOP access string is 
known and the data transfer unit is uniform.  Given the 
RFUOP sequence for the R/D FPGA model, we can 
achieve a lower bound of our problem if we assume that a 
portion of any RFUOP can be transferred.  Under this 
assumption, when a reconfiguration occurs, only a portion 
of an RFUOP might be replaced while the rest is still kept 
on the chip.  Once the removed RFUOP is needed again, 
only the missing portion (which might be the whole 
RFUOP if it was previously completely removed) is 
loaded instead of always loading the entire RFUOP even if 
it is still partially programmed.  We present the Lower 
Bound Algorithm as follows: 

1. If a required RFUOP is not on the chip, do the 
following: 

1.1. Find the missing portion of the RFUOP.  While 
the missing portion is greater than the free space 
on the chip, do the following:  

1.1.1. For all RFUOPs that are currently on the 
chip, a victim RFUOP is identified such 
that in the RFUOP sequence its next 
appearance is later than the appearance of 
all others. 

1.1.2. Let R = the size of the victim + the size of 
the free space – the missing portion. 

1.1.3. If R is greater than 0, a portion of the 
victim that equals R is retained on chip 
while the other portion is replaced and 
added to the free space.  Otherwise add the 
space occupied by the victim to the free 
space.  

1.2. Load the missing portion of the demanded 
RFUOP into the free space.  Increase the 
RFUOP overhead by the loading latency of the 
missing portion. 

In our algorithm, we assumed that a portion of the any 
RFUOP can be retained on the chip, and during 
reconfiguration only the missing portion of the demanded 
RFUOP will be loaded.  This can be viewed as loading 
multiple atomic configuration units.  Therefore, this 
problem can be viewed as the general caching problem, 
with the atomic configuration unit as the data transfer unit.  
Since the Belady algorithm provides the optimal 
replacement for the general caching problem, it can also 
provide the lowest configuration overhead for the R/D 
FPGA.  

General Off-line Algorithm for R/D FPGA. 

Since the Belady algorithm can provide a lower bound for 
the fixed size problem, it can be modified into a more 
realistic off-line algorithm that can deal with non-uniform 
sizes of RFUOPs.  As in the Belady algorithm, for all 
RFUOPs that are currently on chip, we identify the one 
that will not appear in the RFUOP sequence until all others 

have appeared.  But instead of replacing that RFUOP, as in 
the Belady algorithm, the victim configuration is selected 
by considering the factors of size and loading latency.  
Before we further discuss the algorithms, we first give the 
definition of a reappearance window used in our 
algorithms. 

Definition 3: A reappearance window W is the shortest 
subsequence of the RFUOP sequence, starting at the 
current RFUOP, which contains an occurrence of all 
currently loaded RFUOPs.  If a loaded RFUOP does not 
occur again, the reappearance window is the entire 
remaining reconfiguration stream. 

We now present our general off-line algorithm for the R/D 
FPGA: 

1. If a demanded RFUOP is not currently on the chip, do 
the following. 

1.1. While there is not enough room to load the 
RFUOP, do the following:  

1.1.1. Find the reappearance window W. 

1.1.2. For each RFUOP, calculate the total 
number of appearances in W 

1.1.3. For each RFUOP, multiply the loading 
latency by the number of appearances.  The 
RFUOP with the smallest such value is 
replaced. 

1.2. Load the demanded RFUOP.  Increase the 
overall latency by the loading latency of the 
RFUOP. 

LRU Algorithm for R/D FPGA. 

Since the Relocation R/D FPGA model can be viewed as a 
general memory model, we can use a LRU algorithm for 
our reconfiguration problem.  Here, we traverse the 
RFUOP sequence, and when a demanded RFUOP is not 
on the chip and there is not enough room to load the 
RFUOP, an RFUOP on the chip is selected to be removed 
by the LRU algorithm.  Although simple to implement, 
this algorithm may display poor quality because it ignores 
the sizes and latencies of the RFUOPs. 

Penalty Oriented Algorithm for R/D FPGA. 

Since the non-uniform size of RFUOPs is not considered 
as a factor in LRU algorithm, a high RFUOP overhead 
could result.  For example, consider an RFUOP sequence 
1 2 3 1 2 3 1 2 3 …, RFUOPs 1, 2 and 3 have sizes of 
1000, 10 and 10 programming bits respectively.  Suppose 
also that the size of the chip is 1010 programming bits.  
According LRU algorithm, the RFUOPs are replaced in 
the same order of the RFUOP sequence.  However, the 
configuration overhead will be much smaller if RFUOP 1 
is always kept on the chip.  This does not mean that we 
always want to keep larger RFUOPs on the chip as 
keeping larger configurations with low reload frequency 
may not reduce the reconfiguration overhead.  Instead, 
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both size and frequency should be considered in the 
algorithm.  Therefore, we use a variable “credit” to 
determine the victim [Young94].  The algorithm is as 
following: 

1. If a demanded RFUOP is currently on the chip, set its 
credit equal to its size.  Else do following: 

1.1. While there is not enough room to load the 
required RFUOP: 

1.1.1. For all RFUOPs on chip, replace the one 
with the smallest credit and decrease the 
credit of all other RFUOPs by that value.  

1.2. Load the demanded RFUOP and set its credit 
equal to its size. 

General Off-line Algorithm for Relocation FPGA 

One major advantage that the R/D FPGA has over the 
Relocation FPGA is the ability to have higher utilization 
of the space on the chip.  Any small fragments can 
contribute to one larger area such that an RFUOP could 
possibly be loaded without forcing a replacement.  
However, for PRTR with only Relocation those fragments 
could be wasted.  This could cause an RFUOP that is 
currently on chip to be replaced and thus may result in 
extra overhead if the replaced RFUOP is demanded again 
very soon.  Therefore, the main focus is to minimize 
fragments resulted by reconfigurations.  We present the 
algorithm as following: 

1. If a demanded RFUOP is not currently on the chip, do 
the following. 

1.1. While there is not enough room to load the 
RFUOP, do the following:  

1.1.1. Find the reappearance window W. 

1.1.2. For each RFUOP, calculate the total 
number of appearances in W 

1.1.3. For each RFUOP, multiply the loading 
latency and the number of appearances, 
producing a cost. 

1.1.4. For each RFUOP on chip, presume that it is 
to be the candidate victim, identify the 
adjacent configurations that must also be 
removed to make room for the demanded 
RFUOP.  Sum up the costs of all the 
potential victims. 

1.1.5. Identify the smallest sum and the victim(s) 
that produce the smallest cost are replaced. 

1.2. Load the demanded RFUOP.  Increase the 
overall latency by the loading latency of the 
configuration 

The general off-line heuristic that applied to the R/D 
FPGA is also implemented in this algorithm.  The major 
difference for this algorithm is to consider the geometric 

positions of the RFUOPs.  Since the R/D FPGA model has 
the ability to collect the fragments, the RFUOPs are 
replaced in the increasing order of their costs (load latency 
times appearance in the reappearance window).  However, 
this scheme does not work for the Relocation FPGA if the 
chosen victim RFUOPs are separated by non-victim 
RFUOPs because the system cannot merge the non-
adjacent spaces.  Therefore, when multiple RFUOPs are to 
be replaced in the Relocation FPGA, these RFUOPs must 
be adjacent or separated only by empty fragments.  
Considering this geometric factor, the victims to be 
replaced are adjacent RFUOPs (or separated by fragments) 
that produce the overall smallest cost.   

Simulation Results and Discussion 
All algorithms are implemented in C++ on a Sun Sparc-20 
workstation.  As can be seen in Figure 4, the 
reconfiguration penalties of the PRTR is much smaller 
(64% to 85% smaller) than the Single Context model.  
This is because with almost the same capacity the PRTR 
model can significantly reduce the average reconfiguration 
latency of the Single Context model without incurring a 
much larger number of reconfigurations.  The Multi-
Context model has smaller reconfiguration overhead (20% 
to 40% smaller) than the PRTR when the chip silicon is 
small.  With small silicon area, the Multi-Context model is 
more efficient because of its much larger configuration 
area.  With the silicon area becomes larger, the number of 
conflicts incurred in the PRTR model is greatly reduced 
and thus the PRTR has almost the same reconfiguration 
penalty as the Multi-Context model.  In fact, the PRTR 
performs even better than the Multi-Context model in 
some cases.  The Multi-Context device must reload a 
complete context at each time, resulting in a per-
configuration penalty that increases with the size, whereas 
the per-reconfiguration penalty is unchanged with the 
PRTR FPGA.  This, combined with the reduction in PRTR 
conflicts as the FPGA size increases, the overall 
reconfiguration overhead of the PRTR FPGA is smaller 
than that of the Multi-Context FPGA.   
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Figure 4.  Reconfiguration overheads of the 
Single Context FPGA, the PRTR, and the Multi-
Context models.  The “low” represents the lower 
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bound or near optimal solution for each model, 
and the “high” represents the upper bound.   
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Figure 5.  Reconfiguration overheads of the 
PRTR, the Relocation FPGA, and the R/D FPGA.  
The “Low R/D” represents the lower bound 
algorithm for the R/D FPGA.   

Figure 5 demonstrates the reconfiguration overheads of the 
two new models we proposed.  As can be seen, R/D FPGA 
significantly improves the performance of PRTR.  For the 
R/D FPGA, the general off-line algorithm performs almost 
as well as the lower bound algorithm in the 
reconfiguration overhead reduction, especially when the 
chip silicon becomes larger.  Note that the lower bound 
algorithm relaxes the PRTR model restrictions by allowing 
partial replacement of the RFUOPs.  As can be seen in 
Figure 5, future information is very important, as the 
general off-line algorithm for the Relocation FPGA 
performs better than both the LRU and the penalty 
oriented algorithms for the R/D FPGA.  The LRU 
algorithm has shown that it is not suitable for 
configuration caching since the sizes and latencies of 
RFUOPs are not considered. 
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Figure 6.  Comparison between the R/D FPGA 
model and the Multi-Context model. 

Figure 6 compares the R/D FPGA model and the Multi-
Context model.  As we can see, when the chip silicon is 
small, the complete prediction algorithm for the Multi-
Context FPGA performs better than the general off-line 
algorithm for the R/D FPGA.  However, as the chip silicon 
increases, the general off-line algorithm for the R/D FPGA 
has almost the same ability to reduce the reconfiguration 
overhead as the complete prediction algorithm for the 
Multi-Context FPGA.  In addition, the penalty oriented 

algorithm (run time algorithm) for the R/D FPGA 
performs slightly better than the general off-line algorithm 
for the Multi-Context FPGA.  

Conclusions 
Configuration caching, where configurations are retained 
on chip until they are required again, is a technique to 
reduce the reconfiguration overhead.  However, the 
limited on-chip configuration memory and the non-
uniform configuration latency add complexity in deciding 
which configurations to retain to maximize the odds that 
the required data is present in the cache. 

In this work we present some of the first cache 
management algorithms for reconfigurable computing 
systems. We have developed new caching algorithms 
targeted at a number of different FPGA configuration 
models, and created lower bounds to quantify the 
maximum achievable reconfiguration reductions possible.  
In addition to the three currently dominant models (Single 
Context FPGA, Partial Run-Time Reconfigurable FPGA, 
and Multi-Context FPGA), we proposed two new models, 
the Relocation FPGAmodel and the R/D FPGA model, 
which significantly improve the performance of PRTR 
FPGA.  For each of these five models, we have 
implemented a set of algorithms to reduce the 
reconfiguration overhead.  The simulation results 
demonstrate that the Partial Run-Time Reconfigurable 
FPGA and the Multi-Context FPGA are significantly 
better caching models than the traditional Single Context 
FPGA.  

Appendix I 
Based on the structures given and presented in the paper, 
the size equations for the different FPGA models are as 
follows: 

R = number of rows of configuration bits 
C = number of word-size columns of configuration bits 
(we use 32 bits /word) 

Single Context: 291264RC 
PRTR: 260336RC + 476R + 392R × lg(R) + 367217.5C + 
487.5C × lg(C) 
Multi-Context (4 contexts): 636848RC + 476R+ 392R × 
lg(R) + 385937.5Col+ 487.5Col × lg(C) 

PRTR Relocation: 260336RC + 476R + 392R × lg(R) + 
367217.5C + 487.5C × lg (C) + 20300lg(R) 

PRTR Relocation + Defragmentation: 260336RC + 476R 
+ 392R × lg(R) + 407404C + 392C × lg(C) + 365040 + 
30186 × lg(R) 

Given these equations, the different styles will have the 
following area for 1 Megabit of configuration information 
(for the Multi-Context, 1 Megabit of active configuration 
information, 3 Megabits of inactive information).   
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 Single PRTR Multi 
(4) 

PRTR 
Reloc 

Reloc+ 
Defrag 

Area(λ2) 8.5 × 
109 

8.5 × 
109 

20.9 × 
109 

8.6 × 
109 

8.6 × 
109 
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