
1

Configuration Caching Management Techniques for
Reconfigurable Computing

Zhiyuan Li,
Motorola Labs, Motorola Inc.

1303 E. Algonquin Rd., Annex 2,
Schaumburg, Il 60196, USA

azl086@motorola.com

Katherine Compton
Department of Electrical and

Computer Engineering
Northwestern University

Evanston, IL 60208-3118 USA
kati@ece.northwestern.edu

Scott Hauck
Department of Electrical

Engineering
University of Washington
Seattle, WA 98195 USA

hauck@ee.washington.edu

Abstract
Although run-time reconfigurable systems have been
shown to achieve very high performance, the speedups
over traditional microprocessor systems are limited by the
cost of configuration of the hardware. In this paper, we
explore the idea of configuration caching, and create some
of the first cache management algorithms for
reconfigurable systems. We present techniques to
carefully manage the configurations present on the
reconfigurable hardware throughout program execution.
Through the use of the presented strategies, we show that
the number of required reconfigurations is reduced,
lowering the configuration overhead. We extend these
techniques to a number of different FPGA programming
models, and develop both lower bound and realistic
caching algorithms for these structures. Our simulation
results show about a factor of 5 overhead reduction can be
achieved over the commercial FPGA structures.

Introduction
In recent years, coupled processor-FPGA systems have
attracted a lot of attention because of their promise to
deliver the high performance provided by reconfigurable
hardware along with the flexibility of general purpose
processors. In such systems, portions of an application
with repetitive logic and arithmetic computation are
mapped to the reconfigurable hardware, while the
general-purpose processor handles other portions of the
computation.

For many applications, the systems need to be
reconfigured frequently during run-time to exploit the full
potential of using the reconfigurable hardware. With the
increase of size of FPGAs, it could take milliseconds to
reconfigure devices such as Xilinx Virtex II. Therefore,
by reducing the reconfiguration overhead, the performance
of the system is improved. In recent years, much research
has focused on techniques to reduce the configuration
overhead. Some of these techniques include configuration
prefetching [Hauck98a] and configuration compression
[Hauck98b, Li99]. In this paper, we exploit another
approach called configuration caching that reduces the
reconfiguration overhead by buffering configurations on
the FPGA.

Caching configurations on an FPGA is similar to caching
instructions or data for a processor from main memory.
Careful preservatrion of configurations on the array can

avoid the expensive reprogramming process when a
previously used configuration is again needed. In
configuration caching we view the area of the FPGA as a
cache. If this cache is large enough to hold more than one
computation, configuration cache management techniques
will be used to determine when configurations should be
loaded and unloaded to best minimize the overall
reconfiguration times. However, the traditional caching
approaches for general-purpose computational systems are
unsuitable for the configuration caching for the following
reasons:

1) In general-purpose systems, the data loading latency
is fixed because the cache block represents the atomic
data transfer unit, while in coupled processor-FPGA
systems, the loading latency of configurations may
vary because of non-uniform configuration sizes.
This variable latency factor could have a great impact
on the effectiveness of caching approaches and
therefore traditional memory caching approaches such
as LRU are not suitable.

2) Since the ratio of the average size of configurations to
chip size is much larger than the ratio of the block size
to the cache size, only a small number of
configurations can be retained on the chip. This
makes the system more likely to suffer the thrashing
problem, in which the configurations are excessively
swapped between the configuration memory and the
FPGA.

Given the above limitations, the challenge in configuration
caching is to accurately determine which configurations
should remain on the chip and which should be replaced
when a reconfiguration occurs. An incorrect decision will
fail to reduce the reconfiguration overhead and instead
lead to a much higher overhead. The non-uniform
configuration latency and the small number of
configurations that can reside simultaneously on the chip
increase the complexity of this decision. Both the
frequency and latency factors of configurations need to be
considered to ensure the best reconfiguration overhead
reduction.

In addition, the different features of various FPGA
programming models, such as the Single Context, the
Multi-Context, and the Partial Run-Time Reconfigurable
models (discussed in depth later) add complexity to
configuration caching. Specific properties of each FPGA
model require unique caching algorithms. Furthermore,

2

because of the different architectures and control
structures, the computational capacities of the different
models vary for a fixed area. Some of the existing
architectures treat their configuration memory as a cache.
However, none of the research has done quantitative
analysis or developed specific algorithms for different
caching models. In this paper, we will present a capacity
analysis for three prevalent FPGA models and two new
FPGA models. Since each model has its unique
architecture, there is not a single caching scheme that
performs well for all models. Therefore, we have
developed effective caching algorithms for each model.
These algorithms use either run-time information or
profile information of the applications. In order to verify
the effectiveness of those realistic algorithms, We have
also developed lower bound algorithms or near lower
bound algorithms that utilize omniscient execution
information of the applications.

FPGA Models
The three FPGA models mentioned previously, the Single
Context FPGA, the Partial Run-Time Reconfigurable
FPGA, and the Multi-Context FPGA, are the three
dominant models for current run-time reconfigurable
systems. Before we further discuss these models, we first
give definitions of following terms.
RFUOP: The portions of an application that are executed
on FPGA are referred as reconfigurable functional unit
operation (RFUOPs).

Context: A configuration memory store is referred as a
context. Basically each context contains the set of
programming bits for configuring logic and interconnect
of entire device.

Configuration: The sets of RFUOPs that fit in the context
are referred as configurations.

For a Single Context FPGA, the whole chip area must be
reconfigured during each reconfiguration. Even if only a
small portion of the chip needs to reconfigure, the
programming information for the whole chip is rewritten
during the reconfiguration. Intuitively, configuration
caching for the Single Context model needs to allocate
multiple RFUOPs that are likely to be accessed temporally
near each other into a single context to minimize switching
between configurations. By configuring RFUOPs in
groups, the reconfiguration latency can be amortized over
the RFUOPs in a context. Since the reconfiguration
latency for a Single Context FPGA is fixed (based on the
total amount of configuration memory in the device),
minimizing the number of times the chip is reconfigured
will minimize the reconfiguration overhead.
Multi-Context FPGAs contain one logic and interconnect
plane plus multiple memory planes where each memory
plane contains the programming bits for configuring the
logic and interconnect plane. The structure of a 4-context
FPGA is illustrated in Figure 1. Multiple configurations
can be stored on a device, however, only one configuration

can be actively running at any given time. During
reconfiguration, the requested configuration can be loaded
into any of the contexts. The loading will not stop
execution of the device unless the requested configuration
needs to be active immediately. The context containing
the required configuration will be switched to control the
logic and interconnect in one cycle. Compared with the
configuration loading latency, the single cycle
configuration switching latency is negligible. In this
paper, we consider a Multi-Context model that cannot be
partially reconfigured, thus every SRAM context can be
viewed as a Single Context FPGA and the methods for
allocating RFUOPs onto contexts for the Single Context
FPGA could be applied.

1
2
3
4

C

1
2
3
4

C

1
2
3
4

C

Figure 1. The structure of a 4-context FPGA
[DeHon94]

For the Partial Run-Time Reconfigurable (PRTR) FPGA,
the area that is reconfigured is just the actual portion
required by the new RFUOP, while the rest of the chip
remains intact. Unlike the configuration caching for the
Single Context FPGA, where multiple RFUOPs are loaded
to amortize the fixed reconfiguration latency, the
configuration caching method for the PRTR is to load and
retain RFUOPs that are required rather than to reconfigure
the whole chip. The overall reconfiguration overhead is
the summation of the reconfiguration latency of the
individual RFUOPs. Compared to the Single Context
FPGA, the PRTR FPGA provides more flexibility for
performing reconfiguration.

RFUOP 1

RFUOP 2RFUOP 4

(a) (b)

RFUOP 1

RFUOP 2

RFUOP 3

RFUOP 3

RFUOP 4

Figure 2: An example illustrating the effect of
defragmentation. (a) The two small fragments
are located between configurations, and neither of
them is large enough to hold configuration 4. (b)
After defragmentation, RFUOP 4 can be loaded
without replacing any of the three other
configurations.

Based on the PRTR devices, two new models will be
discussed below. In standard PRTR devices, RFUOPs are
mapped to fixed locations in the array, and whenever they
are loaded they must be mapped to that specific location.
Therefore, current PRTR systems are likely to suffer a
thrashing problem, if two or more frequently used

3

RFUOPs occupy overlapping locations in the array. This
could cause significant reconfiguration overhead as
multiple RFUOPs with same location can be contained
within a same loop. Simply increasing the size of the chip
will not alleviate this problem. However, this problem can
be solved by the Relocation model [Hauser97], which
dynamically allocates the position of a configuration on
the FPGA at run time instead of at compilation time.
Another model, called the Relocation + Defragmentation
model (R/D model) [Compton02], further improves the
hardware utilization. Similar to the fragments in the
memory system, portions of chip area in the current PRTR
devices could be wasted because they are too small to hold
another RFUOP. These small portions or fragments could
represent a significant percentage of chip area. In the R/D
model, a special hardware unit called the Defragmentor
can move RFUOPs within the chip such that the small
unused portions are collected as a single large fragment.
This can allow more RFUOPs to be retained on the chip,
increasing the hardware utilization and thus reducing the
reconfiguration overhead. For example, Figure 2 shows
three RFUOPs currently on the chip with two small
fragments. Without defragmentation, one of the three
RFUOPs would have to be replaced when RFUOP 4 is
loaded. However, as shown in the right side of Figure 2,
by pushing RFUOP 2 and 3 upward the defragmentor
produces one single fragment that is large enough to hold
RFUOP 4. The previous three RFUOPs are still present,
and therefore the reconfiguration overhead from reloading
one of these configurations can be avoided.

Experimental Setup
In order to investigate the performance of configuration
caching for the five different programming models
presented in the last section, we develop a set of caching
algorithms for each model. To conduct the evaluation, An
equal amount of hardware resources (in the form of overall
area) is allocated to each model. Because the architectures
and programming structures of the models vary, the actual
areas that devote to computation also vary. Therefore, we
compute the capacity of each model as the number of
programming bits that can be implemented within the
fixed chip area. This in turn affects the number and size of
RFUOPs that can fit simultaneously on the different FPGA
models. Once the capacity of each model is determined,
we will perform 2 more steps. First, we test the
performance of the algorithms for each model by
generating a sequence of configuration accesses from an
execution profile of each benchmark. Second, for each
model, caching algorithms are executed on the
configuration access sequence, and the configuration
overhead for each algorithm is measured.

Capacity analysis

We created VLSI layouts for the programming structures
of each of the different FPGA types: the Single Context,
the Partial Run-Time Reconfigurable, the Multi-Context,
the Relocation FPGA, and the Relocation FPGA and R/D

FPGA. These area models are based on the size of tileable
structures that comprise each programming architecture.
This layout was performed using the Magic tool, and sizes
(in λ2) were obtained for the tiles.

The Single-Context FPGA model is built from shift chains
or RAM structures. The PRTR FPGA, however, requires
more complex hardware. The programming bits are held
in 5-transistor SRAM cells, which form a memory array
similar to traditional RAM structures. Row decoders and
column decoders are necessary to selectively write to the
SRAM cells. Large output tristate drivers are also
required near the column decoder to magnify the weak
signals provided by the SRAM cells when reading the
configuration data off of the array. The Multi-Context
FPGA is based on a previously published design
[Trimberger97]. We use a four-context design in our
representation of a Multi-Context device, where each
context is similar to a programming structure of a Single-
Context FPGA. A few extra transistors and a latch per
active programming bit are required to select between the
four contexts for programming and execution.
Additionally, a context decoder must be added to
determine which of those transistors should be enabled.

The two variants on the PRTR FPGA, the Relocation
FPGA and the R/D FPGA, require a short discussion on
their basic structure. Both of these designs are one-
dimensional row-based models, similar to Chimaera
[Hauck97], PipeRench [Goldstein99], DISC [Writhlin95],
and Garp [Hauser97]. In this type of FPGA, a full row of
computational structures is the atomic unit used when
creating an RFUOP: RFUOPs may use one or more rows,
but any row used by one RFUOP becomes unavailable to
other RFUOPs. While a two-dimensional model could
improve the configuration density, the extra hardware
required and the complexities of two-dimensional
placement limits the benefits gained through the use of the
model.

The PRTR design forms the basis of the Relocation FPGA.
A small adder and a small register, both equal in width to
the number of address bits for the row address of the
configuration memory array, were added for the new
design. This allows all configurations to be generated
such that the "uppermost" row address is 0. Relocating the
configuration is therefore as simple as loading an offset
into the offset register, and adding this offset to the row
addresses supplied when loading a configuration.

Finally, the R/D FPGA [Compton02] is similar to the
PRTR with Relocation, with the addition of a row-sized
set of SRAM cells that form a buffer between the input of
the programming information and the configuration
memory array itself. A full row of programming
information can be read back into this buffer from the
array, and then written back to the array in a different
position as dictated by the offset register. In order to make
this operation efficient, an additional offset register and a
2:1 multiplexer to choose between the offset registers are

4

added. This provides one offset for the reading of
configuration data from the array, and a separate one for
writing the information back to a new location. This
buffer requires its own decoder, since it is composed of
several data words and is addressable. The column
decoder connected to the main array in the basic PRTR
design necessary, as the information written from the
buffer to the array is the full width of the array. This
structure is similar to an architecture proposed by Xilinx
[Trimberger95]; and used in Virtex devices [Virtex99].

In order to account for the size of the logic and
interconnect in these FPGAs, we use the assumption that
the programming layer of a Single Context FPGA uses
approximately 25% of the area of the chip. All other
models are assumed to require this same logic and
interconnect area per bit of configuration. See Appendix I
for calculation details.

As mentioned before, all models are given the same total
silicon area. However, due to the differences in the
configuration structures, the number of programming bits,
and thus the capacity of the device, varies among our
models. For example, according to Appendix I, a Multi-
Context model with 1 Megabit of active configuration
information and 3 Megabits of inactive information has
same area as a PRTR with 2.4 Megabits of configuration
information. Thus the PRTR devices has 2.4 times as
many logic blocks as the Multi-Context device.

Configuration Sequence Generation

We use two sets of benchmarks to evaluate our caching
algorithms for the various FPGA configuration models.
One set of benchmarks was compiled and mapped to the
Garp architecture [Hauser97], where the compute-
intensive loops of C programs are extracted automatically
for acceleration on a tightly-coupled dynamically
reconfigurable coprocessor [Callahan99]. The other set of
benchmarks was created for the Chimera architecture
[Hauck97]. In this system, portions of the code that can
accelerate computation are mapped to the reconfigurable
coprocessor [Hauck98a]. In order to evaluate the
algorithms for different FPGA models, we need to create
an RFUOP access trace for each benchmark, which is
similar to a memory access string used for memory
evaluation.

The RFUOP sequence for each benchmark was generated
by simulating the execution of the benchmark. During the
simulated execution, the RFUOP ID is output when an
RFUOP is encountered. After the completion of the
execution, an ordered sequence of the execution of
RFUOPs is created. In the Garp architecture, each
RFUOP in the benchmark programs has size information
in term of number of rows occupied. For Chimaera, we
assume that the size of an RFUOP is proportional to the
number of instructions mapped to that RFUOP.

Configuration Caching Algorithms
In this work, we seek to find caching methods that target
the different FPGA models. For each FPGA model, we
will develop realistic algorithms that can significantly
reduce the reconfiguration latencies. In order to evaluate
the performance of these realistic algorithms, we also
attempt to develop tight lower bound algorithms by using
complete application execution information. Notice that
the complete execution information is not available at run
time for the realistic algorithms. For the models where
true lower bound algorithms are unavailable we will
develop algorithms that we believe are near optimal.

We divide our algorithms into 3 categories: run time
algorithms, general off-line algorithms, and complete
prediction algorithms. The classification of the algorithms
depends on the time complexity and input information
needed for each algorithm.

The run time algorithms use only basic information on the
execution of the program up to that point, and thus must
make guesses as to the future behavior of the program.
This is similar to run time cache management algorithms
such as LRU. Because of the limited information at run
time, a prediction of keeping a configuration or replacing a
configuration may not be correct and can even cause
higher reconfiguration overhead. Therefore, we believe
that these realistic algorithms will provide a tight upper
bound on reconfiguration overhead.

The complete prediction algorithms use entire execution
information of the application, and can use
computationally expensive approaches. These algorithms
attempt to search the whole execution stream in order to
lower the configuration overhead. These provide the
optimal (lower bound) or near optimal solution. In some
cases these algorithms relax restrictions on system
behavior in order to make the algorithm a true (but
unachieveable) lower bound.

The general off-line algorithms use profile information of
each application, with computationally tractable
algorithms. They represent realistic algorithms for the
case where static execution information is available, or
approximate algorithms where highly accurate execution
predictions can be developed. These algorithms will
typically perform between the run time and complete
prediction algorithms in terms of quality, and are realistic
for some situations.

With these three classes of algorithms, we can get upper
bounds (the run time algorithms) and lower bounds (the
complete prediction algorithms), as well as an estimate of
behavior for executions without data-dependent execution
(the general off-line algorithms).

Single Context Algorithms
In the next two sections we present a near lower bound
algorithm based on simulated annealing, and a more
realistic general off-line algorithm, which uses more

5

restricted information. Note that since there are no run-
time decisions in a single context device (if a needed
configuration is not loaded the only possible behavior is to
overwrite all currently loaded configurations with the
required configuration), we do not present a run-time
algorithm.

Simulated Annealing Alg. for Single Context FPGA

When a reconfiguration occurs in a Single Context FPGA,
even if only a portion of the chip needs to be reconfigured,
the entire configuration memory store will be rewritten.
Because of this property, multiple RFUOPs should be
configured together onto the chip. In this manner, during a
reconfiguration a group (context) that contains the
currently required RFUOP, as well as possibly one or
more later required RFUOPs, is loaded. This amortizes
the configuration time over all of the RFUOPs grouped
into a context. Minimizing the number of group (context)
loadings will minimize the overall reconfiguration
overhead.

The method used for grouping has a great impact on the
latency reduction as the overall reconfiguration overhead
resulted from a good grouping could be much smaller than
that resulting from a bad grouping. For example, suppose
there are 4 RFUOPs with equal size and equal
configuration latency for a computation, and the RFUOP
sequence is 1 2 3 4 3 4 2 1, where 1, 2, 3, and 4 are the
RFUOP IDs. Given a Single Context FPGA that has the
capacity to hold two RFUOPs, the number of context loads
is 3 if RFUOPs 1 and 2 are placed in the same group
(context), and RFUOPs 3 and 4 are placed in another.
However, if RFUOPs 1 and 3 are placed in the same group
(context) and RFUOPs 2 and 4 are placed in the other, the
number of context loads will be 7.

In order to create the optimal solution for grouping, one
simple method is to create all combinations of RFUOPs
and then compute reconfiguration latency for all possible
groupings, from which an optimal solution can be found.
However, this method has exponential time complexity,
and is therefore not applicable for real applications. In this
paper, we instead use a simulated annealing approach to
acquire a near optimal solution. For the simulated
annealing algorithm, we use the exact reconfiguration
overhead for a given grouping as our cost function, and the
moves consist of shuffling the different RFUOPs between
contexts. Specifically, at each step an RFUOP is
randomly picked to move to a randomly selected group,
and if there is not enough room in that group to hold the
RFUOP, RFUOPs in that group are randomly chosen to
move to other groups. Once finished, the reconfiguration
overhead of the grouping is computed by applying the
complete RFUOP sequence.

General Off-line Alg. for Single Context FPGA

Although the simulated annealing approach can generate a
near optimal solution, the high computation complexity
and the exact execution sequence make this solution

unreasonable for most real applications. We therefore
propose an algorithm more suited for general purpose use.
The Single Context FPGA requires that the whole
configuration memory will be rewritten if a demanded
RFUOP is not currently on the chip. Therefore, if two
consecutive RFUOPs are not allocated to the same group,
a reconfiguration will result. Our algorithm attempts to
compute the likelihood of RFUOPs following one another
in sequence, and use this knowledge to minimize the
number of reconfigurations required. Before we further
discuss this algorithm, we first give the definition of a
“correlate” as used in the algorithm.

Definition 1: Given two RFUOPs and an RFUOP
sequence, RFUOP A is said to correlate to RFUOP B if in
the RFUOP sequence there exists any consecutive
appearance of A and B.

For the Single Context FPGA, highly correlated RFUOPs
are allocated into the same group. Therefore the number
of times a context is loaded is greatly decreased, and thus
the reconfiguration overhead is minimized. In our
algorithm, we first build an adjacency matrix of RFUOPs.
Instead of using 0 or 1 as a general adjacency matrix does,
the degree of correlation of every RFUOP pairs (the
number of times two RFUOPs are next to each other) is
recorded. These correlations could be estimated from
expected behavior or determined via profiling. The details
of our grouping algorithm are as follows:
1. Create COR, where COR[I, J]= number of times

RFUOP I correlates to J
2. While any A[I, J] > 0, do

2.1 Find I, J such that COR[I, J] + COR[J, I] is
maximized

2.2 If SIZE[I] + SIZE[J] <= Maximum Context Size
2.2.1. Merge Group I and group J, and add

together sizes
2.2.2. Foreach group K other than I and J

2.2.2.1. A[I, K] += A[J, K]; A[K, I] +=
A[K, J];

2.2.2.2. A[J, K] = 0; A[K, J] = 0;
2.3 A[I, J] = 0; A[J, I] = 0;

Figure 3 illustrates an example of the general off-line
algorithm. Each line connects a pair of correlated
RFUOPs and the number next to each line indicates the
degree of the correlation. As presented in the algorithm,
we will merge the highly correlated groups together under
the size constraints of the target architecture. In this
example, assume that the chip can only retain at most 3
RFUOPs at a time, although in reality this depends on the
sizes of the RFUOPs. At the first grouping step we place
RFUOP17 and RFUOP4 together. In the 2nd step we add
RFUOP43 into the group formed at step 1, since it has a
correlation of 30 (15+15) to that group. We then group
RFUOP2 and RFUOP34 together in step 3, and they
cannot be merged with the previous group because of the
size restriction. Finally, in the 4th step RFUOP22 and
RFUOP68 are grouped together.

6

 RFUOP
43

 RFUOP
34

RFUOP
2

RFUOP
68

RFUOP
22

 RFUOP
4

RFUOP
17

1

1

15
10

10

1915 110

15

Step 4 Step 3 Step 1 Step 2
Figure 3: An example to illustrate the general off-

line algorithm for Single Context FPGA.

Compared to the simulated annealing algorithm, this
algorithm only requires profile information on the degrees
of correlation between RFUOPs. In addition, since the
number of RFUOPs tends to be much smaller than the
length of the RFUOP sequence, it should be much quicker
to find a grouping by searching the correlation matrix
instead of traversing the RFUOP sequence as the
simulated annealing algorithm does. Therefore, the
computation time is significantly reduced.

Multi-Context Algorithms
In this section we present algorithms for multi-context
devices. This includes a complete prediction algorithm
that represents a near lower bound, and a general offline
algorithm that couples the single-context general offline
algorithm with a run-time replacement policy.

Complete Prediction Alg. for Multi-Context FPGA

A Multi-Context FPGA can be regarded as multiple Single
Context FPGAs, since the atomic unit that must be
transferred from the host processor to the FPGA is a full
context. During a reconfiguration, one of the inactive
contexts is replaced. In order to reduce the reconfiguration
overhead, the number of reconfigurations must be reduced.
The factors that could affect the number of
reconfigurations are the configuration grouping method
and the context replacement policies.

We have discussed the importance of the grouping method
for the Single Context FPGA, where an incorrect grouping
may have significantly larger overhead than a good
grouping. This is also true for the Multi-Context FPGA,
where a context (a group of configurations) remains the
atomic reconfiguration data transfer unit. The
reconfiguration overhead caused by the incorrect grouping
remains very high even though the flexibility provided by
the Multi-Context FPGA can somewhat reduce part of the
overhead.

As mentioned previously, even the perfect grouping will
not minimize the reconfiguration overhead if the policies
used for context replacement are not considered. A
context replacement policy specifies which context should
be replaced once a demanded configuration is present.
Just as in the general caching problem where frequently
used blocks should remain in the cache, the contexts that

are frequently used should be kept configured on the chip.
Furthermore, if the atomic configuration unit (context) is
considered as a data block, we can view the Multi-Context
FPGA as a general cache and apply standard cache
algorithms. More specifically, we can apply an existing
optimal replacement algorithm called the Belady algorithm
[Belady66] to the Multi-Context FPGA context
replacement problem.

The Belady algorithm is well known in the operating
systems and computer architecture fields. It states that the
fewest number of replacements can be achieved provided
the memory access sequence is known. This algorithm is
based on the idea that a data item is most likely to be
replaced if it is least likely to be accessed in the near
future. For a Multi-Context FPGA, the optimal context
replacement can be achieved as long as the context access
string is available. When the RFUOP sequence is known,
it is trivial to create the context access string by
transforming the RFUOP sequence. We integrate the
Belady algorithm into the simulated annealing grouping
method used in the Single Context model to achieve the
near optimal solution. Specifically, for each grouping
generated, the number of the context replacements
determined by the Belady algorithm is calculated as the
cost function of the simulated annealing approach.

The reconfiguration overhead for a Multi-Context FPGA
is therefore the number of context loads multiplied by the
configuration latency for a single context. As mentioned
above, the factors that can affect the performance of
configuration caching for the Multi-Context FPGA are the
configuration grouping and the replacement policies.
Since the optimal replacement algorithm is integrated into
the simulated annealing approach, this algorithm will
provide the near optimal solution. We consider this
algorithm to be a complete prediction algorithm.

Least Recently Used (LRU) Alg. for Multi-Context

The LRU algorithm is a widely used memory replacement
algorithm in operating system and architecture. Unlike the
Belady algorithm, the LRU algorithm does not require
future information to make a replacement decision.
Because of the similarity between the configuration
caching problem and the data caching problem, we can
apply the LRU algorithm for the Multi-Context FPGA
model. The LRU is more realistic than the Belady
algorithm, but the reconfiguration overhead incurred is
higher. The basic steps are outlined below:

1. Apply the Single Context general off-line algorithm to
acquire a final grouping of RFUOPs into contexts, and
give each group formed its own ID.

2. Traverse the RFUOP sequence, and for each RFUOP
appearing, change the RFUOP ID to the
corresponding group ID. This will generate a context
access sequence.

7

3. Apply the LRU algorithm to the context access string.
Increase the total number of context loads by one
when a replacement occurs.

Algorithms. for PRTR FPGA
An advantage that the PRTR FPGA has over the Single
Context FPGA is greater flexibility of loading and
retaining configurations. Any time a reconfiguration
occurs, instead of loading the whole group, only a portion
of the chip is reconfigured while the other RFUOPs
located elsewhere on the chip remain intact. The basic
idea of configuration caching for PRTR is to find the
optimal location for each RFUOP. This is to avoid the
thrashing problem that could be caused if RFUOPs used
frequently in succession occupy overlapping positions on
the FPGA. In order to reduce the reconfiguration
overhead for the Partial Run-Time Reconfigurable FPGA,
we need to consider two major factors: the reconfiguration
frequency and the average latency of each RFUOP. Any
algorithm that attempts to lower only one factor will fail to
produce an optimal solution because the reconfiguration
overhead is the product of the two. A complete prediction
algorithm that can achieve near optimal solution and a
general off-line algorithm that can significantly reduce the
running time are presented below.

Simulated Annealing Algorithm for PRTR FPGA

Similar to the simulated annealing algorithm used for the
Single Context FPGA, the purpose of annealing for the
Partial Run-Time Reconfigurable FPGA is to find the
mapping for each configuration such that the
reconfiguration overhead is minimized. For each step, a
randomly selected RFUOP is assigned to a random
position within the chip and the exact reconfiguration
overhead is then computed.

Alternate Simulated Annealing Algorithm for PRTR

In the simulated annealing algorithm presented in the last
section, the computation complexity is very high since the
RFUOP sequence must be traversed to compute the overall
reconfiguration overhead after every move. To reduce the
run time, we develop an alternative annealing algorithm
that does not require to traverse the lengthy RFUOP
sequence. An adjacency matrix of size N×N, where N is
the number of the RFUOPs, is built, to record the possible
conflicts between RFUOPs. In order to reduce the
reconfiguration overhead, the conflicts that will create
larger RFUOP loading latency are distributed to
unoverlapped locations. This is done by modifying the
cost computation step of the previous algorithm. Before
presenting the alternate simulated annealing algorithm, we
first give the definition of a “conflict” as used in our
discussion.

Definition 2: Given two configurations and their positions
on the FPGA, RFUOP A is said to be in conflict with
RFUOP B if any part of A overlaps with any part of B.

We now present our simulated annealing algorithm for the
PRTR FPGA.

1. Create an N × N matrix, where N is the number of
RFUOPs. All values of A[i, j] are set to be 0, where 0
≤ i, j ≤ N-1.

2. Traverse the RFUOP sequence, for any RFUOP j that
appears between two consecutive appearances of an
RFUOP i, A[i, j] is increased by 1. Notice that
multiple appearances of an RFUOP j only count once
between two consecutive appearances of an RFUOP.

3. Assign a random position for each RFUOP. An N × N
adjacency matrix B is created.

4. At each step of in the annealing, recalculate matrix B:

4.1. A random selected RFUOP is reallocated to a
random location within the chip. After the
move, if two RFUOPs i and j conflict, set B[i, j]
and B[j, i] to be 1.

4.2. For any B[i, j]=1, multiply the value of A[i, j]
by the RFUOP loading latency of j. The new
cost is computed as the summation of the results
of all the products.

4.3. Accept the move based on the cost.

Generally, the number of total RFUOPs is much less than
the length of the RFUOP sequence. Therefore, by looking
up the conflict matrices instead of the whole configuration
sequence, the time complexity can be greatly decreased.
However, the quality of the algorithm may decrease
because the matrix may not represent the conflicts exactly.

Algorithms for R/D FPGA.
For R/D FPGA, the replacement policies have a great
impact on reducing the reconfiguration overhead. This is
because a high degree of flexibility is available in
choosing victim RFUOPs when a reconfiguration is
required. With Relocation, an RFUOP can be dynamically
remapped and loaded to an arbitrary position. With
defragmentation, a demanded RFUOP can be loaded as
long as there is enough room on the chip, since the small
fragments existing on the chip can be merged. Instead of
giving the algorithms for Relocation FPGA, we first
analyze the case of R/D FPGA. This includes a lower
bound algorithm that relaxes the restriction in the system,
a general off-line algorithm integrating the Belady
algorithm, and two run time algorithms using different
approaches.

Lower Bound for R/D FPGA

As discussed previously, the major problems that prevent
us from acquiring an optimal solution of configuration
caching are the different sizes and different loading
latencies of different RFUOPs. Generally, the loading
latency of an RFUOP is proportional to the size of the
configuration.

8

The Belady algorithm [Belady66] gives the optimal
replacement for the case that the RFUOP access string is
known and the data transfer unit is uniform. Given the
RFUOP sequence for the R/D FPGA model, we can
achieve a lower bound of our problem if we assume that a
portion of any RFUOP can be transferred. Under this
assumption, when a reconfiguration occurs, only a portion
of an RFUOP might be replaced while the rest is still kept
on the chip. Once the removed RFUOP is needed again,
only the missing portion (which might be the whole
RFUOP if it was previously completely removed) is
loaded instead of always loading the entire RFUOP even if
it is still partially programmed. We present the Lower
Bound Algorithm as follows:

1. If a required RFUOP is not on the chip, do the
following:

1.1. Find the missing portion of the RFUOP. While
the missing portion is greater than the free space
on the chip, do the following:

1.1.1. For all RFUOPs that are currently on the
chip, a victim RFUOP is identified such
that in the RFUOP sequence its next
appearance is later than the appearance of
all others.

1.1.2. Let R = the size of the victim + the size of
the free space – the missing portion.

1.1.3. If R is greater than 0, a portion of the
victim that equals R is retained on chip
while the other portion is replaced and
added to the free space. Otherwise add the
space occupied by the victim to the free
space.

1.2. Load the missing portion of the demanded
RFUOP into the free space. Increase the
RFUOP overhead by the loading latency of the
missing portion.

In our algorithm, we assumed that a portion of the any
RFUOP can be retained on the chip, and during
reconfiguration only the missing portion of the demanded
RFUOP will be loaded. This can be viewed as loading
multiple atomic configuration units. Therefore, this
problem can be viewed as the general caching problem,
with the atomic configuration unit as the data transfer unit.
Since the Belady algorithm provides the optimal
replacement for the general caching problem, it can also
provide the lowest configuration overhead for the R/D
FPGA.

General Off-line Algorithm for R/D FPGA.

Since the Belady algorithm can provide a lower bound for
the fixed size problem, it can be modified into a more
realistic off-line algorithm that can deal with non-uniform
sizes of RFUOPs. As in the Belady algorithm, for all
RFUOPs that are currently on chip, we identify the one
that will not appear in the RFUOP sequence until all others

have appeared. But instead of replacing that RFUOP, as in
the Belady algorithm, the victim configuration is selected
by considering the factors of size and loading latency.
Before we further discuss the algorithms, we first give the
definition of a reappearance window used in our
algorithms.

Definition 3: A reappearance window W is the shortest
subsequence of the RFUOP sequence, starting at the
current RFUOP, which contains an occurrence of all
currently loaded RFUOPs. If a loaded RFUOP does not
occur again, the reappearance window is the entire
remaining reconfiguration stream.

We now present our general off-line algorithm for the R/D
FPGA:

1. If a demanded RFUOP is not currently on the chip, do
the following.

1.1. While there is not enough room to load the
RFUOP, do the following:

1.1.1. Find the reappearance window W.

1.1.2. For each RFUOP, calculate the total
number of appearances in W

1.1.3. For each RFUOP, multiply the loading
latency by the number of appearances. The
RFUOP with the smallest such value is
replaced.

1.2. Load the demanded RFUOP. Increase the
overall latency by the loading latency of the
RFUOP.

LRU Algorithm for R/D FPGA.

Since the Relocation R/D FPGA model can be viewed as a
general memory model, we can use a LRU algorithm for
our reconfiguration problem. Here, we traverse the
RFUOP sequence, and when a demanded RFUOP is not
on the chip and there is not enough room to load the
RFUOP, an RFUOP on the chip is selected to be removed
by the LRU algorithm. Although simple to implement,
this algorithm may display poor quality because it ignores
the sizes and latencies of the RFUOPs.

Penalty Oriented Algorithm for R/D FPGA.

Since the non-uniform size of RFUOPs is not considered
as a factor in LRU algorithm, a high RFUOP overhead
could result. For example, consider an RFUOP sequence
1 2 3 1 2 3 1 2 3 …, RFUOPs 1, 2 and 3 have sizes of
1000, 10 and 10 programming bits respectively. Suppose
also that the size of the chip is 1010 programming bits.
According LRU algorithm, the RFUOPs are replaced in
the same order of the RFUOP sequence. However, the
configuration overhead will be much smaller if RFUOP 1
is always kept on the chip. This does not mean that we
always want to keep larger RFUOPs on the chip as
keeping larger configurations with low reload frequency
may not reduce the reconfiguration overhead. Instead,

9

both size and frequency should be considered in the
algorithm. Therefore, we use a variable “credit” to
determine the victim [Young94]. The algorithm is as
following:

1. If a demanded RFUOP is currently on the chip, set its
credit equal to its size. Else do following:

1.1. While there is not enough room to load the
required RFUOP:

1.1.1. For all RFUOPs on chip, replace the one
with the smallest credit and decrease the
credit of all other RFUOPs by that value.

1.2. Load the demanded RFUOP and set its credit
equal to its size.

General Off-line Algorithm for Relocation FPGA

One major advantage that the R/D FPGA has over the
Relocation FPGA is the ability to have higher utilization
of the space on the chip. Any small fragments can
contribute to one larger area such that an RFUOP could
possibly be loaded without forcing a replacement.
However, for PRTR with only Relocation those fragments
could be wasted. This could cause an RFUOP that is
currently on chip to be replaced and thus may result in
extra overhead if the replaced RFUOP is demanded again
very soon. Therefore, the main focus is to minimize
fragments resulted by reconfigurations. We present the
algorithm as following:

1. If a demanded RFUOP is not currently on the chip, do
the following.

1.1. While there is not enough room to load the
RFUOP, do the following:

1.1.1. Find the reappearance window W.

1.1.2. For each RFUOP, calculate the total
number of appearances in W

1.1.3. For each RFUOP, multiply the loading
latency and the number of appearances,
producing a cost.

1.1.4. For each RFUOP on chip, presume that it is
to be the candidate victim, identify the
adjacent configurations that must also be
removed to make room for the demanded
RFUOP. Sum up the costs of all the
potential victims.

1.1.5. Identify the smallest sum and the victim(s)
that produce the smallest cost are replaced.

1.2. Load the demanded RFUOP. Increase the
overall latency by the loading latency of the
configuration

The general off-line heuristic that applied to the R/D
FPGA is also implemented in this algorithm. The major
difference for this algorithm is to consider the geometric

positions of the RFUOPs. Since the R/D FPGA model has
the ability to collect the fragments, the RFUOPs are
replaced in the increasing order of their costs (load latency
times appearance in the reappearance window). However,
this scheme does not work for the Relocation FPGA if the
chosen victim RFUOPs are separated by non-victim
RFUOPs because the system cannot merge the non-
adjacent spaces. Therefore, when multiple RFUOPs are to
be replaced in the Relocation FPGA, these RFUOPs must
be adjacent or separated only by empty fragments.
Considering this geometric factor, the victims to be
replaced are adjacent RFUOPs (or separated by fragments)
that produce the overall smallest cost.

Simulation Results and Discussion
All algorithms are implemented in C++ on a Sun Sparc-20
workstation. As can be seen in Figure 4, the
reconfiguration penalties of the PRTR is much smaller
(64% to 85% smaller) than the Single Context model.
This is because with almost the same capacity the PRTR
model can significantly reduce the average reconfiguration
latency of the Single Context model without incurring a
much larger number of reconfigurations. The Multi-
Context model has smaller reconfiguration overhead (20%
to 40% smaller) than the PRTR when the chip silicon is
small. With small silicon area, the Multi-Context model is
more efficient because of its much larger configuration
area. With the silicon area becomes larger, the number of
conflicts incurred in the PRTR model is greatly reduced
and thus the PRTR has almost the same reconfiguration
penalty as the Multi-Context model. In fact, the PRTR
performs even better than the Multi-Context model in
some cases. The Multi-Context device must reload a
complete context at each time, resulting in a per-
configuration penalty that increases with the size, whereas
the per-reconfiguration penalty is unchanged with the
PRTR FPGA. This, combined with the reduction in PRTR
conflicts as the FPGA size increases, the overall
reconfiguration overhead of the PRTR FPGA is smaller
than that of the Multi-Context FPGA.

0

0.2

0.4

0.6

0.8

1

1.2

1 1.25 1.5 1.75 2

Normalized FPGA size

N
orm

alized Configuration Penalty

Single low
Single high
Partial low
Partial high
Multi low
Multi high

Figure 4. Reconfiguration overheads of the
Single Context FPGA, the PRTR, and the Multi-
Context models. The “low” represents the lower

10

bound or near optimal solution for each model,
and the “high” represents the upper bound.

0
0.05
0.1

0.15
0.2

0.25
0.3

0.35
0.4

0.45

1 1.25 1.5 1.75 2
Normalized FPGA size

N
orm

alized C
onfiguration Penalty

Partial high

LRU R/D

Partial low

penalty R/D

Gen. Rel.

off-line R/D

Low R/D

Figure 5. Reconfiguration overheads of the
PRTR, the Relocation FPGA, and the R/D FPGA.
The “Low R/D” represents the lower bound
algorithm for the R/D FPGA.

Figure 5 demonstrates the reconfiguration overheads of the
two new models we proposed. As can be seen, R/D FPGA
significantly improves the performance of PRTR. For the
R/D FPGA, the general off-line algorithm performs almost
as well as the lower bound algorithm in the
reconfiguration overhead reduction, especially when the
chip silicon becomes larger. Note that the lower bound
algorithm relaxes the PRTR model restrictions by allowing
partial replacement of the RFUOPs. As can be seen in
Figure 5, future information is very important, as the
general off-line algorithm for the Relocation FPGA
performs better than both the LRU and the penalty
oriented algorithms for the R/D FPGA. The LRU
algorithm has shown that it is not suitable for
configuration caching since the sizes and latencies of
RFUOPs are not considered.

0
0.05
0.1

0.15
0.2

0.25
0.3

0.35
0.4

1 1.25 1.5 1.75 2
Normalized FPGA size

N
orm

alized C
onfiguration Penalty

off-line R/D

penalty R/D

Multi low

off-line Multi

Figure 6. Comparison between the R/D FPGA
model and the Multi-Context model.

Figure 6 compares the R/D FPGA model and the Multi-
Context model. As we can see, when the chip silicon is
small, the complete prediction algorithm for the Multi-
Context FPGA performs better than the general off-line
algorithm for the R/D FPGA. However, as the chip silicon
increases, the general off-line algorithm for the R/D FPGA
has almost the same ability to reduce the reconfiguration
overhead as the complete prediction algorithm for the
Multi-Context FPGA. In addition, the penalty oriented

algorithm (run time algorithm) for the R/D FPGA
performs slightly better than the general off-line algorithm
for the Multi-Context FPGA.

Conclusions
Configuration caching, where configurations are retained
on chip until they are required again, is a technique to
reduce the reconfiguration overhead. However, the
limited on-chip configuration memory and the non-
uniform configuration latency add complexity in deciding
which configurations to retain to maximize the odds that
the required data is present in the cache.

In this work we present some of the first cache
management algorithms for reconfigurable computing
systems. We have developed new caching algorithms
targeted at a number of different FPGA configuration
models, and created lower bounds to quantify the
maximum achievable reconfiguration reductions possible.
In addition to the three currently dominant models (Single
Context FPGA, Partial Run-Time Reconfigurable FPGA,
and Multi-Context FPGA), we proposed two new models,
the Relocation FPGAmodel and the R/D FPGA model,
which significantly improve the performance of PRTR
FPGA. For each of these five models, we have
implemented a set of algorithms to reduce the
reconfiguration overhead. The simulation results
demonstrate that the Partial Run-Time Reconfigurable
FPGA and the Multi-Context FPGA are significantly
better caching models than the traditional Single Context
FPGA.

Appendix I
Based on the structures given and presented in the paper,
the size equations for the different FPGA models are as
follows:

R = number of rows of configuration bits
C = number of word-size columns of configuration bits
(we use 32 bits /word)

Single Context: 291264RC
PRTR: 260336RC + 476R + 392R × lg(R) + 367217.5C +
487.5C × lg(C)
Multi-Context (4 contexts): 636848RC + 476R+ 392R ×
lg(R) + 385937.5Col+ 487.5Col × lg(C)

PRTR Relocation: 260336RC + 476R + 392R × lg(R) +
367217.5C + 487.5C × lg (C) + 20300lg(R)

PRTR Relocation + Defragmentation: 260336RC + 476R
+ 392R × lg(R) + 407404C + 392C × lg(C) + 365040 +
30186 × lg(R)

Given these equations, the different styles will have the
following area for 1 Megabit of configuration information
(for the Multi-Context, 1 Megabit of active configuration
information, 3 Megabits of inactive information).

11

 Single PRTR Multi
(4)

PRTR
Reloc

Reloc+
Defrag

Area(λ2) 8.5 ×
109

8.5 ×
109

20.9 ×
109

8.6 ×
109

8.6 ×
109

References
[Belady66] L. A. Belady "A Study of Replacement

Algorithms for Virtual Storage Computers," IBM
Systems Journal 5, 2, 78-101, 1966.

[Compton02] K. Compton, J. Cooley, S. Knol, S.
Hauck, “Abstract: Configuration Relocation and
Defragmentation for FPGAs”, IEEE Transactions
on VLSI, Vol. 10, No. 3., pp. 209-220. June 2002

[DeHon94] Andre DeHon, “DPGA-Coupled
Microprocessors: Commodity ICs for the Early 21st
Century”, IEEE Workshop on FPGAs for Custom
Computing Machines, April 1994.

[Goldstein99] S. C. Goldstein, H. Schmit, M. Moe, M.
Budiu, S. Cadambi, R. R. Taylor, R. Laufer,
"PipeRench: A Coprocessor for Streaming
Multimedia Acceleration", Proceedings of the 26th
Annual International Symposium on Computer
Architecture, June 1999.

[Hauck97] S. Hauck, T. W. Fry, M. M. Hosler, J. P.
Kao, "The Chimaera Reconfigurable Functional
Unit", IEEE Symposium on FPGAs for Custom
Computing Machines, pp. 87-96, 1997.

[Hauck98a] S. Hauck, “Configuration Prefetch for
Single Context Reconfigurable Coprocessors”,
ACM/SIGDA International Symposium on Field-
Programmable Gate Arrays, pp. 65-74, 1998.

[Hauck98b] S. Hauck, Z. Li, E. Schwabe,
“Configuration Compression for the Xilinx XC6200
FPGA”, IEEE Symposium on FPGAs for Custom
Computing Machines, 1998.

[Hauser97] J. R. Hauser, J. Wawrzynek, “Garp: A
MIPS Processor with a Reconfigurable
Coprocessor”, IEEE Symposium on FPGAs for
Custom Computing Machines, pp. 12-21, 1997.

[Li99] Z. Li, S.Hauck, “Don’t Care Discovery for FPGA
Configuration Compression”, ACM/SIGDA
International Symposium on Field-Programmable
Gate Arrays, pp. 91-100, 1999.

[Trimberger95] S. Trimberger, "Field Programmable
Gate Array with Built-In Bitstream Data
Expansion", U.S. Patent 5,426,379, issued June 20,
1995.

[Trimberger97] S. Trimberger, D. Carberry, A. Johnson,
J. Wong, "A Time-Multiplexed FPGA", IEEE
Symposium on FPGAs for Custom Computing
Machines, pp. 22-28, 1997.

[Wittig96] R. D. Wittig, P. Chow, “OneChip: An
FPGA Processor with Reconfigurable Logic,” IEEE
Symposium on FPGAs for Custom Computing
Machines, 1996.

[Young94] N. E. Young. “The k-server dual and
loose competitiveness for paging”, Algorithmica,
11(6), 535-541, June 1994

