Totem: Custom Reconfigurable
Array Generation

Katherine Compton
Northwestern University
Evanston, IL 60208
kati@ece.nwu.edu

Abstract

Reconfigurable hardware has been shown to provide
an efficient compromise between the flexibility of
software and the performance of hardware. However,
even coarse-grained reconfigurable architectures
target the general case, and miss optimization
opportunities present if characteristics of the desired
application set are known. We can therefore increase
efficiency by restricting the structure to support a class
or a specific set of algorithms, while still providing
flexibility within that set. By generating a custom
array for a given computation domain, we explore the
design space between an ASIC and an FPGA.
However, the manual creation of these customized
reprogrammable architectures would be a labor-
intensive process, leading to high design costs.
Instead, we propose automatic reconfigurable
architecture generation specialized to given
application sets. The Totem custom reconfigurable
array generator is our initial step in this direction.

Introduction

One of the primary difficulties of using FPGAs and
reconfigurable systems for DSP, networking, and other
applications is the fine-grained nature of many of these
devices. Common operations such as multiplication and
addition would greatly benefit from more efficient coarse-
grained components. A number of reconfigurable systems
have therefore been designed with a coarse-grained structure.
These structures target the general case, attempting to fulfill
the computation needs of any application that may be needed.
However, because different application types have different
requirements, this creates a large degree of wasted hardware
(and silicon area) if the applications run on the system are
constrained to a limited range of computations. While the
flexibility of general-purpose hardware has its place for
situations where the computational requirements are not
known in advance, frequently specialized on-chip hardware is
used to obtain greater performance for a specific set of
compute-intensive calculations.

While general-purpose reconfigurable systems have exhibited
their value in the applications mentioned above [Compton00],
we believe that performance gains can be further improved
within a smaller area if the algorithm types are known prior to

Scott Hauck
University of Washington
Seattle, WA 98195
hauck@ee.washington.edu

fabrication. By generating a custom reconfigurable array for a
computation domain, we can reduce the amount of "useless"
hardware and programming points that would otherwise
occupy valuable area or slow the computations. Architectures
such as RaPiD [Ebeling96], PipeRench [Goldstein99], and
Pleiades [Abnous96] have made progress in this direction by
targeting multimedia and DSP domains. The RaPiD group has
also proposed the synthesizing of custom RaPiD arrays for
different application sets [Ebeling98, Cronquist99b]. In many
ways this effort can be viewed as a first step in this direction.

We are working towards the automatic creation of custom
reconfigurable architectures designed specifically for a given
range of computations being performed. These application
domains could include cryptography, DSP or a subdomain of
DSP, specific scientific data analysis, or any other compute-
intensive area. This concept is different from traditional
ASICs in that we retain some level of hardware
programmability. This programmability gives the custom
architecture a measure of flexibility beyond what is available
in an ASIC, as well as providing the benefits of run-time
reconfigurability. Run-time reconfiguration can then be
employed to allow for near ASIC-level performance with a
much smaller area overhead due to the re-use of area-intensive
hardware components. Essentially, depending on the needs of
the algorithms and the stated parameters, this architecture
generation could potentially provide a design anywhere within
the range between ASICs and FPGAs. Very constrained
computations would be primarily fixed ASIC logic, while
more unconstrained domains would require near-FPGA
functionality. This custom array would then be a
computational unit within an ASIC fabricated for the tasks
needed. Because the ASIC will be custom-designed, we can
also optimize the array for the application domain.

Specialized reconfigurable architectures, while beneficial in
theory, would be impractical in practice if they had to be
created by hand for each group of applications. Each of these
optimized reconfigurable structures may be quite different,
depending on the application set or sets desired.
Unfortunately, this is contrary to one of the basic principals of
FPGAs and reconfigurable hardware, which is quick time-to-
market with low design costs. Therefore, we have started the
Totem project — an endeavor to automatically generate custom
reconfigurable architectures based on an input set of

applications, and therefore greatly decrease the cost of new
architecture development. This paper presents our initial
progress in this arena.

Background

We are designing the Totem generator to leverage the coarse-
grained nature of many compute-intensive algorithms. This
involves using large word-width computation structures such
as adders and multipliers, as well as word-width routing
structures. Because we are operating on word-sized data, a
one-dimensional structure is not only less complex to
generate, but also efficient. Essentially, the bit order of the
data words does not change within the routing structure,
leading naturally to a computational flow along one axis.
Changing the direction of these buses would require additional
routing area for the wire bends. Also, using available RAM
units, 2D computations can be transformed into the 1D
domain [Cronquist99a].

This leads us to consider the RaPiD architecture [Ebeling96]
as a basis for our first efforts in the Totem project. RaPiD not
only bears a strong similarity to the parameters mentioned
above, but also has a compilation engine and a library of
completed netlists for the architecture. It uses components
such as multipliers, adders, and RAMs to allow for efficient
computation of algorithms operating on word-sized data.
These components are arranged along a one-dimensional axis,
as shown in Figure 1. Signals travel horizontally along the
routing, with vertical routing used only to provide connections
between buses and computational components. The RaPiD
compiler operates on application descriptions, converting them
to netlists mapped to component types present in the RaPiD
architecture. For more detail on the specifics of the RaPiD
architecture and compiler, please refer to one of the papers on
the subject [Ebeling96, Cronquist99a].

o |Z] o |3 S Lol |2 o |[>»] lof |3 lo |>
o Znrenn2hnn € nenncnnenn - nnenn 2 nnenn o
DZ|P]] :xlcxlcxlgxlc
— 1
— LT
7 —
— {
— T
— LT
— LT
’_‘_l
— LT
LT

Figure 1: A block diagram of a single cell from the
RaPiD architecture [Ebeling96, Scott01]. 16 cells are
tiled along the horizontal axis to form the full
architecture.

Using the RaPiD netlists and architecture style as a starting
point, we have created an architecture generator which reads
in the compiled RaPiD netlists, performs profiling, and creates
a custom one-dimensional datapath capable of executing any

of the input netlists. Because this hardware is optimized to the
particular application set, it should have a smaller area and
delay cost than a generic architecture implementing the same
applications. However, by providing a reconfigurable
interconnect and programmable logic units many of the
benefits of reconfigurability are retained.

Architecture Generator

We have created an initial Totem architecture generator for
compiled RaPiD netlists (in standard RaPiD netlist format)
that creates a computational structure and routing fabric
optimized for the given group of netlists. Like RaPiD, the
architecture we generate is coarse-grained, consisting of
components such as multipliers and adders, with a one-
dimensional routing structure. Again, the motivating factor
here is to automatically create architectures for input
application sets that leverage the benefits of both ASICs and
reconfigurable implementations. These architectures aim to
have a higher performance and smaller area than possible in a
general-purpose reconfigurable architecture implementation.
The custom architectures also use the reconfigurable aspect to
retain a measure of flexibility within the architecture and the
area advantages of hardware re-use.

The architecture generation occurs in two distinct phases. In
the placement stage of the generation we determine the
computation needs of the algorithms, create the computational
components (ALUs, RAMs, multipliers, registers, etc), and
order the physical elements along the one-dimensional
datapath. The individual instances of component use within
the netlists must be assigned to the physical components. This
binding also occurs in the placement stage. In the routing
stage, we create the actual wires and muxing/demuxing
needed to interconnect the different components, including the
I/0s. These phases are described in depth in the next sections.

To determine the quality of our automatically generated
structures, we measure the area of these specialized structures,
and compare it to that of a basic, generic RaPiD architecture
(pictured in Figure 1) implementing the same netlists. In order
to better analyze the results, we will consider a number of
methods of routing structure generation. We then compare the
areas of the architectures we generate to a calculated lower
bound value for each set of netlists.

Placement

The ordering of the physical elements within our generated
structure is determined via simulated annealing. This
algorithm operates by taking a random initial placement of
physical elements, and repeatedly attempting to move the
location of a randomly selected element. The move is
accepted if it improves the overall "cost" of the placement. In
order to avoid settling into a local minima in the placement
space, non-improving moves are also sometimes accepted.
The probability of accepting a "bad" move is governed by the
current temperature. This temperature is initially high,

Netlist O

INl_» multiplier
————» s | [E| ouT
IN2
> Al 0
C1l D1
Netlist 1
IN1 multiplier multiplier
——O P
= >
IN2 L~ L S
> 2 D
(@) (@)
o o
D2 D3

Figure 2: Two different netlists that could be implemented together on a custom architecture. Netlist 0 is a multiply-
accumulate circuit, while netlist 1 is a simple 2-tap FIR filter, using constants stored in the registers.

causing a larger number of bad moves to be accepted, and is
gradually decreased until no bad moves will be accepted. A
large number of moves are attempted at each temperature.

While the general practice of simulated annealing is relatively
straightforward, there is an additional consideration for our
architecture generator. We would like to base our cost
estimate of the quality of the placement on the area and delay
of the completed circuit. However, knowledge of the routing
structure, which has not yet been created, is then required.
Instead we base our calculations on the individual signals
within the netlists. But the extents and locations of these
signals are not known until the instances of each netlist are
assigned (bound) to physical components. The best binding
depends on the given placement, and the best placement
depends on the given binding.

This is different from typical placement problems where
binding is either not applicable (ASIC) or is determined post-
fabrication (FPGA). Our binding problem is also distinct from
traditional binding of components within an FPGA because
here we have the flexibility to perform physical movements
(changing the location of specific hardware resources),
whereas the architecture in standard FPGAs is traditionally
fixed by the manufacturer. Additionally, we know in advance
at least a subset of our target netlists, and can use this
information to judge the quality of the layout. For our
application, the best component binding and the best physical
placement are interdependent, and therefore we perform these
two operations simultaneously.

Consequently, we extend the simulated annealing framework
to solve not only the physical placement problem, but the
binding problem. The instances of each netlist are arbitrarily
assigned initial bindings to corresponding physical
components. Then, we create an additional type of "move" to
be attempted within the simulated annealing algorithm -
rebinding an instance of a circuit component of a single netlist
to a different physical component. The probability of
attempting a re-binding versus a physical component
movement is equal to the fraction of total components that are
instances instead of physical structures. Figure 2 shows two
netlists that could be used to generate a custom architecture,
and Figure 3 shows a reasonable placement. Note the
difference between instances and physical components. For
example, instances D1 and D4 should likely be in the same
physical register because they share an input and an output.
But which physical register is immaterial, provided it is near
the ALU.

Our current Totem implementation uses the maximum number
of each resource in any of the netlists to determine the number
of that type of physical component to instantiate. This
represents the minimum number of these components
necessary to execute the netlists. Future Totem
implementations will provide the potential to use a larger
number of components than strictly required by the netlists if
it will improve area (particularly routing and multiplexing) or
delay results. For now, however, using the minimum number
of each type of component allows us to examine one end of
the design space, and provides a simple method to determine
the computational requirements of the circuit. Once these

MULT1

AL
A2

—
MULT?2 = OlouT
- w
< Llee=2
c1 [™py
A3 c2 | |p4

Figure 3: A reasonable placement for a custom architecture with both netlists from Figure 2. Netlist 0's signals are shown
as dotted, and Netlist 1's signals are solid. The bold 1/O lines connect to both netlists. Wires have not yet been created.
The instance names from Figure 2 are shown inside the boxes in italics, while the bold capital labels on components refer
to the component name. The muxes and demuxes to provide configurable routing have not yet been added.

components have been created, we can use simulated
annealing to order them along the one-dimensional datapath.

For the initial temperature calculation, number of moves per
temperature, and cooling schedule, we used the guidelines
presented for VPR [Betz97]. The cost metric used in our
implementation of the simulated annealing algorithm attempts
to create shorter wires in order to minimize the area and delay
of the final placement. Since the computation structures are
fixed by the netlists at this point, area is directly related to the
number of wires passing through a given cross-section of our
architecture. Delay is dependent on the length of the wires,
and long wires will tend to cause larger cross-sections.
Therefore, minimizing the cross-section routing width will aid
in reducing both area and delay.

In our cost metric, we relate signals, which are a desired
interconnection within a given netlist, to wires, which are
physical routing resources fabricated into the array. As stated
previously, we have not yet generated a routing structure. We
instead use the signals of the netlists to approximate the
routing using the following method. First we determine how
many signals from each netlist pass through a given cross-
section. For our purposes, we consider each physical element
location to be a cross-section to examine. Then we take the
maximum width across all netlists at each of these cross-
sections as an estimate of the routing width required at that
location. In order to increasingly discourage wide overall
cross-sections, we square the total widths at each component
location. To get the final cost value, we add up the squared
overall cross-section widths from each cross-section location.
This allows us to strongly penalize very wide areas, and
lightly penalize more narrow areas.

At the completion of the placement phase, we have obtained
an ordering of the physical components along the one-
dimensional datapath, as well as a binding of each of the
instances of the various netlists to those physical components.
The next step is to then generate the routing structure needed
to connect the physical components in order to best
accommodate the interconnection requirements.

Routing

A custom routing structure, like a custom computational
structure, will increase the efficiency for a reconfigurable
structure used for a given class of algorithms. By bounding
the computation domain to a set of applications, we decrease
the amount of extraneous hardware and routing, leading to a
more area and delay efficient architecture. The step of
creating the custom routing structure is thus essential to our
custom architecture generator.

The routing structure of the custom generated architecture will
depend on the results obtained in the placement phase. At this
point, the physical locations of the components will be fixed,
as well as the bindings of the netlist instances to those
components. From the netlist information, we have the list of
signals, with their respective source and sink instances (the
signal’s ports). These instances have been bound in the
placement stage, so we know the physical location of the ports
of the signals. We must create wires and connections in order
to allow each netlist to execute individually on our custom
hardware.

This also may involve generating multiplexers on the inputs
and demultiplexers on the outputs of components to
accommodate the different requirements of the various
netlists. For example, if netlist A needs the output of the
adder to route to a register, but netlist B sends the adder's
output to a multiplier, then a demultiplexer is instantiated on
the output of the adder to allow for the signals to be directed
properly for each netlist. Additionally, if netlist A receives an
adder input from a register, while netlist B receives the same
input from another adder, a multiplexer is instantiated to
choose between these two sources based on which netlist is
currently active in the architecture. Figure 4 continues the
example from the placement section, showing the generated
routing structure for the given placement. Because several of
the wires here contain more than one signal, it is evident that
the routing cross-section width is less in Figure 4 than if each
line from Figure 3 was made into a wire.

The object of the routing generation phase is to minimize area
by sharing wires between netlists while keeping the number of

MULT2 0

g A3

— N N ™
x O] MULT1 x O]
2 El:J 2 IhI:J
= AL =
Bl |DZ ! A2 B3| |[D
IN2
INL

Y

QQ ALUL

Figure 4: The desired routing architecture for the example of Figure 2 and Figure 3. Each line is a wire. The bold lines
indicate a wire that is shared by both netlists. Wires used by only one netlist are shown dotted for Netlist 0 and solid for
Netlist 1. The shaded components are routing muxes and demuxes added to allow sharing of components between netlists.

muxes and demuxes required low. We have developed a
number of routing algorithms that explore different parts of
this design space. Two of the algorithms, greedy and clique
partitioning, use heuristics to group similar signals from
different netlists into wires. For comparison, the maximum
sharing algorithm gives the results for the generated placement
if the wires are shared as much as possible (minimizing
routing cross-section width). Finally, a lower-bound
calculation for area is presented in the results section in order
to provide a reference against which we may measure the
performance of the other algorithms.

In order to understand the motivations for the algorithms
presented below, we must first discuss the routing problem
itself. As in the placement problem, creating the routing is
two problems combined into one. First, how should the wires
be created, and second, which signals should be mapped to
which wires. In many current FPGA architectures, wire
lengths can be adjusted for each netlist by taking advantage of
programmable connections between lengths of wire,
potentially forming a single long wire out of a few or many
short wires. However, for the current Totem architecture
generator we only provide for this type of wire segmentation
in the maximum sharing algorithm. While future versions of
our application will use segmentation as a means to provide
more flexibility within a given area, we begin with non-
segmented wires for simplicity.

Unless signals from different netlists share the exact same
source and sinks, we must somehow determine which sets of
signals belong together within a wire. One method is to
simply not share at all, which is explored in the minimum
sharing algorithm. As stated above, the maximum sharing
algorithm uses segmented wires to allow for the maximum
amount of wire sharing between netlists, and therefore
minimum routing area. The remaining two algorithms, greedy
and clique partitioning, use heuristics to determine how the
wires should be shared between signals. The heuristics
operate by placing signals with a high degree of similarity
between ports (source and sinks) together into the same wire.
This not only reduces area by sharing the wire, but also
reduces the size of the muxes and demuxes off of the shared
ports. The exact methods used by each algorithm to determine
wire sharing are described below.

Greedy

The concept of correlation between wires or signals is critical
to both the greedy and clique partitioning algorithms, and is
also used to some extent in the low-area algorithm. The idea
is that we wish to merge the different netlists' signals onto
physical wires so as to minimize the number and size of
multiplexers on the inputs to functional units, and
demultiplexers on the outputs.

We use a modified version of the weight equation for a clique-
partitioning heuristic [Dorndorf94]. The original equation is:
correlation = 2 * <# of identical attributes> - <total #
attributes>. Here, items that are completely dissimilar will
have a correlation of -<total # attributes>. In our program, an
"attribute” is a port, and a "shared attribute" is when two wires
share an input or output location. Rather than use the total
number of ports in the architecture or the total number of ports
for any one wire (which would both create many negative
edge weights, penalizing wires with few ports), we instead use
the union of the ports of the two signals being correlated.
Therefore, the above equation will yield a positive value if
more than half of the total number of ports among two signals
are shared by those signals.

The greedy algorithm operates by merging wires that share
ports together. To begin, the signals are assigned individually
to their own wires. Next, a list of correlations between all
compatible wire pairs (wires that are not both used in the same
netlist) is created. The highest correlation value is selected at
each iteration, and those two wires are merged. All other
correlations related to either of the two wires that have been
merged are updated according to the ports in the shared wire.
If any of the correlations now contain a conflict due to the new
attributes of the merged wire, these correlations are deleted
from the list. This process continues until the correlation list
is empty, and no further wires may be merged.

Clique Partitioning

Although the greedy method will place highly correlated
signals together into a wire, this is not necessarily the best
solution. A higher degree of sharing may be possible, or
perhaps the delay would be much better (and the area not

much worse) if a signal was not shared at all. The clique
partitioning heuristic uses a more sophisticated algorithm to
address these issues.

Clique partitioning is a concept from graph algorithms
whereby vertices are divided into completely connected
groups. In our algorithm each wire is represented by a vertex,
and the "groups”, or cliques, represent physical wires. We use
a weighted-edge version of clique partitioning [Dorndorf94],
as we wish to group highly correlated signals together into
wires, where the correlation value between signals is used as
the edge weight. The cliques are then partitioned such that the
weight of the edges connecting vertices within the same clique
is maximized. Signals that cannot occupy the same wire
(signals from the same netlist) carry an extremely large
negative weight that will prevent them from being assigned to
the same clique. Therefore, although signal A may be highly
correlated with signal B, and signal B is highly correlated with
signal C, they will not all be placed into the same wire (clique)
if signal A conflicts with signal C, due to the large negative
weight between those vertices.

Given that weighted clique partitioning of a graph with both
negative and positive edge weights is NP-Complete, we use an
ejection chain heuristic [Dorndorf94] based on tabu search.
We start with a random assigning of vertices to cliques (where
the number of cliques equals the number of vertices). We
allow cliques to be empty, but all vertices must be assigned.
The algorithm then uses multiple iterations in which each
vertex is moved from its current clique to a different one. This
is done by each time selecting a non-tabu vertex and a new
clique for that vertex that will produce the maximum overall
(not necessarily positive) gain in total weight for the graph.
Once a vertex is moved, it is marked tabu until the next
iteration.

At the end of the iteration after all vertices have been moved,
the list of cumulative solutions after each move is examined,
and the one with the highest total weight is chosen. The
moves leading to this solution are kept, and the remainder
discarded. This solution is then used as the base for the next
iteration of moves, and all vertices are marked non-tabu. This
loop continues until none of the cumulative solutions in an
iteration produces a total weight greater than the base solution
for that iteration.

Maximum Sharing

In the current version of Totem, the previous two algorithms
do not allow more than one signal from a given netlist to share
the same wire through the use of segmented routing. This
results in a larger routing area than strictly necessary. In order
to provide some sort of measure of what the routing area
might be if segmented wires were to be used, the maximum
sharing algorithm is used. In this algorithm we actually assign
signals to tracks, with a modified version of the standard left-
edge algorithm. The signals are sorted based on their leftmost
endpoint. Signals are taken in order from the list, leftmost

first, and assigned to a track. The track with empty space
furthest to the left for the current signal's netlist is selected. If
more than one track fits this description, the track with the
highest correlation to the current signal is chosen. In this
manner, we aim to pack the signals into as few tracks as
possible, while still considering some amount of correlation to
reduce the number of input multiplexers and output
demultiplexers.

This algorithm only represents an attempt at a minimum
routing area, not a minimum total area. The difficulty here is
that each optional connection in a track requires the
instantiation of a bus connector component within the
datapath. In the maximum sharing algorithm we do not
consider bus connector placement or minimization, and
therefore although the routing area may be significantly
reduced, the logic area is increased.

Results

In order to form an initial evaluation of our Totem architecture
generator, we compare architectures it generates within the
DSP domain to RaPiD, a reconfigurable architecture designed
specifically for DSP [Ebeling96]. We have obtained a number
of compiled RaPiD netlists for testing our architecture
generator. These netlists were designed before Totem was
written, and hence are not targeted to our generator. The
names of these netlist files, along with a short description are
listed in

. The table also lists the datapath area required to implement
each netlist on the standard RaPiD architecture, as it appears
in [Cronquist99a]. It should be noted, however, that these
areas are based on the computational requirements of the
netlists. These applications were not routed onto the RaPiD
architecture, only placed. Several of the applications, such as
filter_img and filter_med, will not be able to be routed onto
the RaPiD architecture due to heavy routing needs. Therefore,
this comparison is somewhat biased in favor of RaPiD (and
thus is a conservative estimate of Totem’s benefits).

RaPiD area
Benchmark | # Description
Area
Cells
filter img 21 | 644.07, Image Filter
filter med 15 | 460.05) Median Filter
firsm 9 | 276.03 FIR Filter
firsymeven | 17 | 521.39] FIR Filter
matmult 6 184.02] Matrix Multiplier
sort2 9 276.03} Sorter

Table 1: The RaPiD netlists used for our benchmarking.
The number of RaPiD cells required to implement each
of these netlists on a traditional RaPiD architecture is
given, followed by the resulting area in MAZ.

RaPiD area Totem Area Lower | Factor

Benchmark Totem - Factor
Netlists # Area Method Logic | Route | Total Improved Bound | Off
Cells Area | Area | Area Area [Bound
filter_img Clique 243.85| 58.77| 302.62 2.13 1.56
fiIter_med 21 |644.07] Greedy 238.75] 57.34] 296.09) 2.18] 193.77 1.53
- Max Share | 583.72| 1.38] 585.10] 1.10} 3.02
filter_img Clique 322.04| 84.90| 406.94 1.58 1.60
filter_med § 21 |644.07] Greedy 315.38| 81.98| 397.36 1.62] 255.04 1.56
firsymeven Max Share | 699.10f 1.39{ 700.49} 0.92 2.75)
filter_img Clique 250.40| 55.19] 305.59] 2.11 1.54
firs_m 21 |644.07] Greedy 248.64| 54.62| 303.26 2.12] 198.93 1.52
Max Share | 576.21| 2.23| 578.44 1.11] 2.91
filter med Clique 158.19| 25.34| 183.53 2,51 1.58
firom 15 |460.05§ Greedy 156.80| 24.88| 181.68 2.53] 115.81 1.57
Max Share | 380.77| 1.41| 382.18 1.20} 3.30
firsm Clique 168.79| 20.97| 189.76 2.75 1.30
firsymeven 17 |521.39] Greedy 167.58] 20.72| 188.30} 2.77] 145.88 1.29
Max Share | 385.64| 1.26] 386.90] 1.35 2.65
firsm Clique 216.09| 35.15| 251.24 2.08 1.40
firsymeven] 17 [521.39] Greedy 214.54| 34.48| 249.02 2.09§ 179.01 1.39
matmult Max Share | 473.39] 2.01| 475.40) 1.10Q 2.66
firsm Clique 150.50| 21.16| 171.66 1.61 1.55
matmult 9 [276.03] Greedy 147.10| 20.48| 167.58 1.65] 110.92 1.51
sort2 Max Share | 346.13| 0.19| 346.32 0.80) 3.12
Clique 357.10] 99.35| 456.45 1.41] 1.79
ALL 21 |644.07] Greedy 348.05| 93.59| 441.64 1.46} 255.04 1.73
Max Share | 744.01| 3.85| 747.86 0.86 2.93

Table 2: The results of executing different sets of RaPiD netlists on Totem, along with comparison RaPiD areas and
calculated lower bound areas. All areas listed are in terms of MAZ.

Given that each RaPiD cell is identical, a combination of
RaPiD netlists can be implemented on the maximum number
of cells required by any one of those netlists. This is the area
calculation used to compare to the results of our generated
architectures.

The area of a generated architecture can be considered in
terms of logic area and routing area. Logic area includes all
computational components, as well as any muxes or demuxes
that we may have generated for netlist sharing. For the
maximum sharing algorithm, logic area also includes the area
required for any bus connectors used within the generated
tracks. In all generated architectures, the size of the generated
muxes and demuxes, as well as the size of any muxes that the
netlist compiler may have instantiated, are reduced to the
smallest number of inputs or outputs required to route the
needed signals from/to the appropriate location. In other
words, if there are 5 signals entering a multiplexer, but 2 of
them share the same wire, then the multiplexer has 3
<shouldn’t this be 4?> physical inputs, and is sized
accordingly. The equations for the mux and demux sizes were
obtained through the analysis of the layouts of the RaPiD
multiplexer and driver objects. In the traditional RaPiD
architecture, all multiplexers have 14 inputs, frequently

resulting in needlessly large multiplexers. The routing area of
the Totem architectures is somewhat more complex to
compute. The RaPiD architecture has 14 buses that run over
the computational components. Therefore, we assume that
any wire cross-section width up to 14 does not add any height
to the layout (it is included in the logic area). However, some
areas of the circuit may contain a larger width, and this must
be accounted for. In order to compute the additional area
beyond the logic area required for the routing, we examine the
wire cross-section at each physical component. If this cross
section is larger than 14, then the additional routing is
translated to the height in lambda required for the extra buses.
This height is multiplied by the width in lambda of the
corresponding computational unit. The total routing area is
obtained by summing this value at each component location.

The different benchmark combinations, along with RaPiD area
requirements and Totem area requirements, are listed in Table
2. The results of the three different routing methods are given
for each benchmark combination in terms of logic area,
routing area, and total area.

For a lower bound on the area requirements of any generated
circuit for the input netlists, we consider only the minimum
number of circuit elements required to implement all of the

desired circuits. We assume that no additional multiplexing is
required on the inputs or outputs to a component due to the
presence of multiple netlists. We also assume that all routing
will fit within the 14 tracks that are routed over the
computational components. In most situations this represents
an unachievable lower bound. This lower bound is also given
in Table 2.

There are a number of interesting conclusions we can draw
from Table 2. First, in both the clique and greedy algorithms,
we obtain some area improvement for all netlist combinations,
sometimes above a factor of 2. In light of the primitive nature
of our first Totem implementation, these results are quite
promising. By comparing the routing areas given by greedy
and clique to the routing area of maximum sharing, we can
infer that the clique and greedy algorithms could be improved
a great deal by the introduction of segmented routing. This
feature is currently only present in the maximum sharing
algorithm, which has led directly to its lower routing area.

Second, we see that sharing wires as much as possible
(maximum sharing) may yield the lowest routing area, but
does not give the lowest overall area. In fact, for each of our
benchmark combinations, maximum sharing resulted in the
worst total area of the three algorithms tested. This result is
unsurprising, as by requiring maximum sharing we are
introducing a large number of bus connectors to form
segmented routing. Therefore, when we are adding the ability
to create segmented routing to the Totem generator, it will be
important to weigh the reduction of wire area against the
increase of bus connector area in order to obtain a lower
overall area.

Third, the architecture generator has the best performance
when the netlists used are highly similar. The two
combinations using only FIR filters and the matrix multiplier
most closely approach the lower bound area. Intuitively, this
makes sense, as similar netlists will use many of the same
computational units in much the same order. The placement
and routing phases take advantage of this similarity. Note that
when all of the netlists are combined to generate one
architecture, we have the poorest performance (though still
better than the traditional RaPiD architecture for greedy and
clique).

Conclusions

FPGAs provide effective solutions for many coarse-grained
applications, such as digital signal processing, encryption,
scientific data processing, and others. However, commercial
FPGAs are fine-grained, and miss many optimization
opportunities. Coarse-grained reconfigurable architectures
have been designed to improve efficiency for these types of
applications, but they still target a broad spectrum of coarse-
grained computations. By creating reconfigurable
architectures specialized for the application domain(s) being
used, we can reap the benefits of custom computational and
routing resources, similar to an ASIC, while still leveraging

the assets of reconfigurable computing. These custom
reconfigurable architectures can then be embedded into an
SOC environment, yielding a high-performance computing
solution.

Because it is unreasonable to expect a custom FPGA layout
for each set of applications needed we have begun work on
Totem, a custom reconfigurable architecture generator. This
architecture generator will provide the ability to generate the
specialized reconfigurable hardware in a fraction of the time
required to create an architecture by hand.

We have shown area comparisons between the circuit areas of
the architectures generated by the first Totem implementation
and the traditional RaPiD architecture areas required for the
same combinations of netlists. All but one of our generating
algorithms provided a measure of circuit area reduction, even
with the initial simplified implementations described in this
paper. More than half of the test showed more than a factor of
2 improvement for those algorithms. The results also hint at
guidelines for future algorithm development, such as the
reduction of segment points in addition to wire cross-section
width for segmented routing.

Finally, the improvement of the custom architecture area over
the traditional RaPiD area requirements, coupled with the fact
that the custom architectures are on average only 1.5 times
larger than the absolute lower bound, indicates that custom
FPGA architecture generation has a great deal of potential.

Future Work

Currently, we target only area reduction in the creation of our
custom reconfigurable architectures. We plan to expand our
algorithms to also provide delay optimization. This will allow
users of Totem to generate an architecture that will be
customized not only for their computation and area needs, but
that also meets their delay constraints.

The Totem Custom Reconfigurable Array Generator has a
great deal of expansion potential. Because this is the first
version, we have made simplifications to the problem in order
to obtain our initial results. We can therefore increase the
power of this generator in a large number of ways.

First, the cost function for the simulated annealing, while
effective, can be further expanded. A more powerful cost
function would encourage mappings using the same
component type that share a source or destination to be bound
to the same resource. This has the benefit of increasing
correlations between wires prior to the actual routing structure
creation, decreasing the size and/or amount of muxes
generated.

Second, at the moment we only create the minimum number
of computational units required by the union of the input
netlists. Future versions of the Totem generator should
provide the flexibility to include resources in excess of the

minimum. This could potentially improve delay values by
shortening wires and reducing muxing. The routing method
we have initially taken is also on the simplistic side. We
provide only point-to-point connections. Future work will
entail the creation of segmented routing structures. This will
greatly reduce routing area compared to our current
implementation, where wires cannot be split.

Additionally, we would like to provide some ability for new
netlists with similar characteristics to also be able to be
executed on our custom architectures. Currently, the
generated architecture is optimized only for the input
application netlists, and would likely not perform as well if
additional netlists were used post-fabrication. Future versions
of the generator will allow users to control where their custom
architecture will lie along the spectrum between ASIC and
FPGA in order to provide for post-fabrication flexibility of the
design.

Finally, to bring our Totem generator to a finished,
commercially viable state, we are also working on providing
automatic VLSI layout creation of our generated architecture
descriptions. Using the output of the architecture generator,
this will provide a layout ready for detailed simulation and
fabrication. We are also creating automatic methods for
generating placement and routing tools for these custom-
generated FPGA architectures, enabling Totem to be a
complete start-to-finish tool for custom array generation.

Acknowledgments

This research was supported in part by Motorola, Inc., and
DARPA. Katherine Compton was supported by an NSF
Fellowship. Scott Hauck was supported by an NSF CAREER
award.

Thanks to the RaPiD team at the CS department of the
University of Washington, especially Chris Fisher and Mike
Scott, for fielding questions on the architecture and the
compiler. Thanks also to University of Washington EE
graduate students Akshay Sharma for the measure of RaPiD
cells required to implement each netlist, and Shawn Phillips
for help with RaPiD layout structures.

References

[Abnous96]

[Betz97]

[Compton00]

[Cronquist99a]

[Cronquist99b]

[Dorndorfo4]

[Ebeling96]

[Ebeling98]

[Goldstein99]

[Scott01]

A. Abnous, J. Rabaey, "Ultra-Low-Power
Domain-Specific Multimedia Processors",
Proceedings of the IEEE VLSl Signal
Processing Workshop, October 1996.

V. Betz, J. Rose, "VPR: A New Packing,
Placement and Routing Tool for FPGA
Research”, International Workshop on Field
Programmable Logic and Applications, pp.
213-222,1997.

K. Compton, S. Hauck, "Configurable
Computing: A Survey of Systems and
Software" submitted to ACM Computing
Surveys, 2000.

D. C. Cronquist, P. Franklin, C. Fisher, M.
Figueroa, C. Ebeling, "Architecture Design
of Reconfigurable Pipelined Datapaths",
Twentieth Anniversary Conference on
Advanced Research in VLSI, 1999.

D. C. Cronquist, P. Franklin, C. Fisher, M.
Figueroa, C. Ebeling, "Architecture Design
of Reconfigurable Pipelined Datapaths",
Presentation at Twentieth Anniversary
Conference on Advanced Research in VLSI,
1999.

U. Dorndorf, E. Pesch, "Fast Clustering
Algorithms"”, ORSA Journal on Computing,
Vol. 6, No. 2, pp. 141-152, 1994.

C. Ebeling, D. C. Cronquist, P. Franklin,
"RaPiD - Reconfigurable Pipelined
Datapath”, 6th Annual Workshop on Field-
Programmable Logic and Applications,
1996.

C. Ebeling, "Rapid: A Configurable
Architecture for Compute-Intensive
Applications",

http://www.cs.washington.edu/research/proj
ects/lis/www/rapid/overview, 1998.

S. C. Goldstein, H. Schmit, M. Moe, M.
Budiu, S. Cadambi, R. R. Taylor, R. Laufer,
"PipeRench: a Coprocessor for Streaming
Multimedia Acceleration", ISCA, 1999.

M. Scott, "The RaPiD Cell
Personal Communications, 2001.

Structure”,

	Abstract
	Introduction
	Background
	Architecture Generator
	Placement
	Routing
	Greedy
	Clique Partitioning
	Maximum Sharing

	Results
	Conclusions
	Future Work
	Acknowledgments
	References

