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Abstract

Due to its potential to greatly accelerate a wide variety of applications, reconfigurable computing
has become a subject of a great deal of research.  Its key feature is the ability to perform
computations in hardware to increase performance, while retaining much of the flexibility of a
software solution.  In this introduction to reconfigurable computing, we give an overview of the
hardware architectures of reconfigurable computing machines, and the software that targets these
machines, such as compilation tools.  Finally, we consider the issues involved in run-time
reconfigurable systems, which re-use the configurable hardware during program execution.

Introduction

There are two primary methods in traditional computing for the execution of algorithms.  The first is to use
an Application Specific Integrated Circuit, or ASIC, to perform the operations in hardware.  Because these
ASICs are designed specifically to perform a given computation, they are very fast and efficient when
executing the exact computation for which they were designed.  However, after fabrication the circuit
cannot be altered.  Microprocessors are a far more flexible solution.  Processors execute a set of
instructions to perform a computation.  By changing the software instructions, the functionality of the
system is altered without changing the hardware.  However, the downside of this flexibility is that the
performance suffers, and is far below that of an ASIC.  The processor must read each instruction from
memory, determine its meaning, and only then execute it.  This results in a high execution overhead for
each individual operation.  Reconfigurable computing is intended to fill the gap between hardware and
software, achieving potentially much higher performance than software, while maintaining a higher level of
flexibility than hardware.

This paper presents a brief overview of current research in hardware and software systems for
reconfigurable computing, as well as techniques that specifically target run-time reconfigurability.  We lead
off this discussion by examining FPGAs in general, followed by an exploration of the various hardware
structures used in reconfigurable systems.  Next we look at the software required for compilation of
algorithms to configurable computers, and the tradeoffs between hand-mapping and automatic compilation.
Finally, we discuss run-time reconfigurable systems, which further utilize the intrinsic flexibility of
configurable computing platforms by optimizing the hardware not only for different applications, but for
different operations within a single application as well.

This overview does not seek to cover every technique and research project in the area of reconfigurable
computing.  Instead, it hopes to serve as a brief introduction to this rapidly evolving field, bringing
interested readers quickly up to speed on developments from the last half-decade.  Those interested in
further background can find coverage of other techniques and systems elsewhere [1, 2, 3, 4]

Field-Programmable Gate Arrays

FPGAs were originally created to serve as a hybrid device between PALs and Mask-Programmable Gate
Arrays (MPGAs).  Like PALs, they are fully electrically programmable, meaning that the Non-Recurring
Engineering (NRE) costs are amortized, and they can be customized nearly instantaneously.  Like MPGAs
they can implement very complex computations on a single chip, with million gate devices currently in
production.  Because of these features, FPGAs are often primarily viewed as glue-logic replacement and
rapid-prototyping vehicles.  However, as we will show throughout this paper, the flexibility, capacity, and



performance of these devices has opened up completely new avenues in high-performance computation,
forming the basis of reconfigurable computing.

Most current FPGAs are SRAM-programmable (Figure 1 left).  This means that SRAM bits are connected
to the configuration points in the FPGA, and programming the SRAM bits configures the FPGA.  Thus,
these chips can be programmed and reprogrammed as easily as a standard static RAM.  To configure the
routing on an FPGA, typically a passgate structure is employed (see Figure 1 middle).  Here the
programming bit will turn on a routing connection when it is configured with a true value, allowing a signal
to flow from one wire to another, and will disconnect these resources when the bit is set to false.  With a
proper interconnection of these elements, which may include millions of routing choice points within a
single device, a rich routing fabric can be created.
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Figure 1: Programming bit for SRAM-based FPGAs [5] (left), a programmable routing
connection (middle) and a 3-input LUT (right).

Lookup-tables (LUTs), which are essentially small memories provided for computing arbitrary logic
functions, are generally used as the computational structures in an FPGA.  These elements can compute any
function of N inputs (where N is the number of control signals for the LUT’s mux) by programming the 2N

programming bits with the truth table of the desired function (see Figure 1 right).  Thus, if all programming
bits except the one corresponding to the input pattern 111 were set to zero a 3-input LUT would act as a 3-
input AND gate, while programming it with all ones except in 000 would compute a NAND.  The typical
FPGA has a logic block with one 4-input LUT, an optional D flip-flop (DFF), and some form of fast carry
logic.  The LUTs allow any function to be implemented, providing generic logic.  The flip-flop can be used
for pipelining, registers, stateholding functions for finite state machines, or any other situation where
clocking is required.

Routing structures for FPGAs have generally focused on island-style layouts.  In this type of structure, the
logic blocks are surrounded by general routing channels, running both horizontally and vertically.  The
input and output signals of the blocks are connected to the channels through programmable connection
blocks.  Switchboxes are used at the juncture of horizontal and vertical wires to allow signals to change
routing direction at those points.  Using these structures, relatively arbitrary interconnections can be
achieved.

Hardware

There are many different architectures designed for use in reconfigurable computing.  One of the primary
variations between these is the degree of coupling (if any) with a host microprocessor.  Programmable logic
tends to be inefficient at implementing certain types of operations, such as loop and branch control.  In
order to most efficiently run an application in a reconfigurable computing system, the areas of the program
that cannot be easily mapped to the reconfigurable logic are executed on a host microprocessor.
Meanwhile, the areas with a high density of computation that can benefit from implementation in hardware
are mapped to the reconfigurable logic.  For the systems that use a microprocessor in conjunction with
reconfigurable logic, there are several ways in which these two computation structures may be coupled (see
Figure 2).
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Figure 2: Different levels of coupling in a reconfigurable system.  Reconfigurable logic is shaded.

First, reconfigurable hardware can be used solely to provide reconfigurable functional units within a host
processor.  This allows for a traditional programming environment with the addition of custom instructions
that may change over time.  Here, the reconfigurable units execute as functional units on the main
microprocessor datapath, with registers used to hold the input and output operands.

Second, a reconfigurable unit may be used as a coprocessor.  A coprocessor is in general larger than a
functional unit, and is able to perform computations without the constant supervision of the host processor.
Instead, the processor initializes the reconfigurable hardware and either sends the necessary data to the
logic, or provides information on where this data might be found in memory.

Third, an attached reconfigurable processing unit behaves as if it is an additional processor in a multi-
processor system.  The host processor's data cache is not visible to the attached reconfigurable processing
unit.  There is, therefore, a higher delay in communication between the host processor and the
reconfigurable hardware, such as when communicating configuration information, input data, and results.
However, this type of reconfigurable hardware does allow for a great deal of computation independence, by
shifting large chunks of a computation over to the reconfigurable hardware.

Finally, the most loosely coupled form of reconfigurable hardware is that of an external standalone
processing unit.  This type of reconfigurable hardware communicates infrequently with a host processor (if
present).  This model is similar to that of networked workstations, where processing may occur for very
long periods of time without a great deal of communication.

Each of these styles has distinct benefits and drawbacks.  The tighter the integration of the reconfigurable
hardware, the more frequently it can be used within an application or set of applications due to a lower
communication overhead.  However, the hardware is unable to operate for significant portions of time
without intervention from a host processor, and the amount of reconfigurable logic available is often quite
limited.  The more loosely coupled styles allow for greater parallelism in program execution, but suffer
from higher communications overhead.  In applications that require a great deal of communication, this can
reduce or remove any acceleration benefits gained through this type of reconfigurable hardware.

In addition to the level of coupling, the design of the actual computation blocks within the reconfigurable
hardware varies from system to system.  Each unit of computation, or logic block, can be as simple as a 3-
input look up table (LUT), or as complex as a 4-bit ALU.  This difference in block size is commonly
referred to as the granularity of the logic block, where the 3-bit LUT is an example of a very fine grained
computational element, and a 4-bit ALU is an example of a quite coarse grained unit.  The finer grained
blocks are useful for bit-level manipulations, while the coarse grained blocks are better optimized for
standard datapath applications.



Very fine-grained logic blocks (such as those operating only on 2 or 3 one-bit values) are useful for bit-
level manipulation of data, as can frequently be found in encryption and image processing applications.
Also, because the cells are fine grained, computation structures of arbitrary bit widths can be created.  This
can be useful for implementing datapath circuits that are based on data-widths not implemented on the host
processor (5 bit multiply, 128 bit addition, etc).  Performing these types of computation on a traditional
microprocessor wastes calculation effort for the case of very small operands, and incurs multi-instruction
overhead for the case of very large operands.  The reconfigurable logic performs exactly the calculation
needed.

Several reconfigurable systems use a medium-sized granularity of logic block.  A number of these
architectures operate on two or more 4-bit wide data words, in particular.  This increases the total number
of input lines to the circuit, and provides more efficient computational structures for more complex
problems.  Medium-grained logic blocks may be used to implement datapath circuits of varying bit widths,
similar to the fine-grained structures.  However, with the ability to perform more complex operations of a
greater number of inputs, this type of structure can also be used to efficiently implement more complex
operations such as finite state machines.

Very coarse-grained architectures are primarily intended for the implementation of word-width datapath
circuits.  Because the logic blocks used are optimized for large computations, they will perform these
operations much more quickly (and consume less chip area) than a set of smaller cells connected to form
the same type of structure.  However, because their composition is static, they are unable to leverage
optimizations in the size of operands.  For example, the RaPiD architecture [6], is composed of 16-bit
adders, multipliers, and registers.  If only three 1-bit values are required, then the use of this architecture
suffers an unnecessary area and speed overhead, as all 16 bits are computed.  However, these coarse-
grained architectures can be much more efficient than fine-grained architectures for implementing
functions closer to their basic word size.

The routing between the logic blocks within the reconfigurable hardware is also of great importance.
Routing contributes significantly to the overall area of the reconfigurable hardware.  Yet, when the
percentage of logic blocks used in an FPGA becomes very high, automatic routing tools frequently have
difficulty achieving the necessary connections between the blocks.  Good routing structures are therefore
essential to ensure that a design can be successfully placed and routed onto the reconfigurable hardware.

There are two primary methods to provide both local and global routing resource.  The first is the use of
segmented routing.  In segmented routing, short wires accommodate local communications traffic.  These
short wires can be connected together using switchboxes to emulate longer wires.  Optionally, longer wires
may also be included, and signals may transfer between local and distance routing at connection blocks.
Hierarchical routing provides local routing within a cluster, and longer wires at the boundaries connect the
different clusters together.  Hierarchical structures are optimized for situations where the most
communication should be local and only a limited amount of communication will traverse long distances.

Reconfigurable systems that are composed of multiple FPGA chips interconnected on a single processing
board have additional hardware concerns over single-chip systems.  In particular, there is a need for an
efficient connection scheme between the chips, as well as to external memory and the system bus.  This is
to provide for circuits that are too large to fit within a single FPGA, but may be partitioned over the
multiple FPGAs available.  A number of different interconnection schemes have been explored [2],
including meshes, crossbars, and variants on these structures.  Because of the need for efficient
communication between the FPGAs, the determining the inter-chip routing topology is a very important
step in the design of a multi-FPGA system.

Once a circuit has been configured onto the reconfigurable hardware, it is ready to be used by the host
processor during program execution.  The runtime operation of a reconfigurable system occurs in two
distinct phases: configuration and execution.  The configuration of the reconfigurable hardware is under the
control of the host processor.  This host processor directs a stream of configuration data to the
reconfigurable hardware, and this configuration data is used to define the actual operation of the hardware.
Configurations can be loaded solely at startup of a program, or periodically during runtime, depending on



the design of the system.  More concepts involved in run-time reconfiguration (the dynamic reconfiguration
of devices during computation execution) are discussed in a later section.

The actual execution model of the reconfigurable hardware varies from system to system.  Some systems
suspend the execution of the host processor during execution on the reconfigurable hardware.  Others allow
for simultaneous execution with techniques similar to the use of fork/join primitives in multiprocessor
programming.

Software

Although reconfigurable hardware has been shown to have significant performance benefits in program
execution, it may be ignored by application programmers unless they are able to easily incorporate its use
into their systems.  This requires a software design environment that aids in the creation of configurations
for the reconfigurable hardware.  This software can range from a software assist for manual circuit creation,
to a complete automated circuit design system.  Manual circuit description is a powerful method for the
creation of high-quality circuit designs.  However, it requires a great deal of background knowledge of the
particular reconfigurable system employed, as well as a significant amount of design time.  On the other
end of the spectrum, an automatic compilation system provides a quick and easy way to program for
reconfigurable systems, and therefore makes the use of reconfigurable hardware more accessible to general
application programmers.  For a more detailed description of software and compilation issues in
reconfigurable computing refer to [1, 7].

Both for manual and automatic circuit creation, the design process must proceed through a number of
distinct phases.  Circuit specification is the process of describing the functions that are to be placed on the
reconfigurable hardware.  This can be done as simply as writing a program in C that represents the
functionality of the algorithm to be implemented in hardware.  On the other hand, this can also be as
complex as specifying the inputs, outputs, and operation of each basic building block in the reconfigurable
system.  Between these two methods is the specification of the circuit using generic complex components,
such as adders and multipliers, which will be mapped to the actual hardware later in the design process.

When targeting systems that include both reconfigurable hardware and a traditional microprocessor, the
program must first be partitioned into sections to be executed on the reconfigurable hardware and sections
to be executed in software on the microprocessor. In general, complex control sequences such as variable
loops are more efficiently implemented in software, while fixed datapath operations may be more optimally
executed in hardware.  This can be performed manually, by delineating sections of the program within the
source code to be executed on the hardware.  Alternately, an automatic compilation tool can determine
where areas of the code should be executed.

For descriptions in a high level language (HLL), such as C/C++ or Java, or ones using complex building
blocks, the code targeted to the reconfigurable hardware must be compiled into a netlist of gate-level
components.  For the HLL implementations this involves generating computational components to perform
the arithmetic and logic operations within the program, and separate structures to handle the program
control, such as loop iterations and branching operations.  Given a structural description, either generated
from a HLL or specified by the user, each complex structure is replaced with a network of the basic gates
that perform that function.

Once a detailed gate-level description of the circuit has been created, these structures must be translated to
the actual logic elements of the reconfigurable hardware.  This stage is known as technology mapping, and
is dependent upon the exact target architecture.  For a LUT-based architecture, this stage partitions the
circuit into a number of small sub-functions, each of which can be mapped to a single LUT.

After the circuit has been mapped, the resulting blocks must be placed onto the reconfigurable hardware.
Each of these blocks is assigned to a specific location within the hardware, hopefully close to the other
logic blocks with which it communicates.  As FPGA capacities increase, the placement phase of circuit
mapping becomes more and more time consuming.  Floorplanning is a technique that can be used to



alleviate some of this cost.  A floorplanning algorithm first partitions the logic cells into clusters, where
cells with a large amount of communication are grouped together.  These clusters are then placed as units
onto regions of the reconfigurable hardware.  Once this global placement is complete, the actual placement
algorithm performs detailed placement of the individual logic blocks within the boundaries assigned to the
cluster.  This technique therefore separates the overall placement problem into a set of smaller localized
sub-problems for the detailed placer to solve, reducing the overall workload.

After floorplanning, the individual logic blocks are placed into specific logic cells.  One algorithm that is
commonly used is the simulated annealing technique [8].  This method takes an initial placement of the
system, which can be generated randomly, and performs a series of “moves” on that layout.  A move is
simply the changing of the location of a single logic cell, or the exchanging of locations of two logic cells.
These moves are attempted one at a time using random target locations at each iteration.  If a move
improves the layout, then the layout is changed to reflect that move.  If a move is considered to be
undesirable, then it is only accepted a small percentage of the time.  Accepting a few “bad” moves helps to
avoid any local minima in the placement space.

Finally, the different reconfigurable components comprising the application circuit are connected during
the routing stage.  Particular signals are assigned to specific portions of the routing resources of the
reconfigurable hardware.  This can become difficult if the placement causes many connected components
to be placed far from one another, as the signals that travel long distances use more routing resources than
those that travel shorter ones.  A good placement is therefore essential to the routing process.  One of the
challenges in routing for FPGAs and reconfigurable systems is that the available routing resources are
limited.  In general hardware design, the goal is to minimize the number of routing tracks used in a channel
between rows of computation units, but the channels can be made as wide as necessary.  In reconfigurable
systems, however, the number of available routing tracks is determined at fabrication time, and therefore
the routing software must perform within these boundaries, and concentrate on minimizing congestion
within the available tracks.  Because routing is one of the more time-intensive portions of the design cycle,
it can be helpful to determine if a placed circuit can be routed before actually performing the routing step.
This quickly informs the designer if changes need to be made to the layout or a larger reconfigurable
structure is required.

When reconfigurable systems use more than one FPGA to form the complete reconfigurable hardware,
there are additional compilation issues to deal with.  The design must first be partitioned into the different
FPGA chips.  This is generally done by placing each highly connected portion of a circuit into a single
chip.  Multi-FPGA systems have a limited number of I/O pins that connect the chips together, and therefore
their use must be minimized in the overall circuit mapping.  Also, by minimizing the amount of routing
required between the FPGAs, the number of paths with a high (inter-chip) delay is reduced, and the circuit
may have an overall higher performance.  Similarly, those sections of the circuit that require a short delay
time must be placed upon the same chip.  Global placement then determines which of the actual FPGAs in
the multi-FPGA system will contain each of the partitions. After the circuit has been partitioned into the
different FPGA chips, the connections between the chips must be routed.  A global routing algorithm
determines at a high level the connections between the FPGA chips.   It first selects a region of output pins
on the source FPGA for a given signal, and determines which (if any) routing switches or additional
FPGAs the signal must pass through to get to the destination FPGA.  Detailed routing and pin assignment
are then used to assign signals to traces on an existing multi-FPGA board, or to create traces for a multi-
FPGA board that is to be created specifically to implement the given circuit.

Run-Time Reconfiguration

Frequently, the areas of a program that can be accelerated through the use of reconfigurable hardware are
too numerous or complex to be loaded simultaneously onto the available hardware.  For these cases, it is
helpful to swap different configurations in and out of the reconfigurable hardware as they are needed
during program execution, performing a run-time reconfiguration of the hardware.  Because run-time
reconfiguration allows more sections of an application to be mapped into hardware than can be fit in a non-



run-time reconfigurable system, a greater portion of the program can be accelerated in the run-time
reconfigurable systems.  This can lead to an overall improvement in performance.

There are a few different configuration memory styles that can be used with reconfigurable systems (Figure
3).  A single context device is a serially programmed chip that requires a complete reconfiguration in order
to change any of the programming bits.  Most commercial FPGAs are of this variety.  To implement run-
time reconfiguration on this type of device, configurations must be grouped into full contexts, and the
complete contexts are swapped in and out of the hardware as needed.

A multi-context device has multiple layers of programming bits, where each layer can be active at a
different point in time. An advantage of the multi-context FPGA over a single-context architecture is that it
allows for an extremely fast context switch (on the order of nanoseconds), whereas the single-context may
take milliseconds or more to reprogram. The multi-context design does allow for background loading,
permitting one context to be configuring while another is in execution.  Each context of a multi-context
device can be viewed as a separate single-context device.

Devices that can be selectively programmed without a complete reconfiguration are called partially
reconfigurable.  The partially reconfigurable FPGA is also more suited to run-time reconfiguration than the
single-context, because small areas of the array can be modified without requiring that the entire logic array
be reprogrammed.  This allows configurations which occupy only a part of the total area to be configured
onto the array without removing all of the configurations already present.  Furthermore, individual
configurations can be selectively modified based on run-time conditions, such as changing registered
constant values or a constant coefficient multiplier structure over time.  These small reconfigurations
require much less time than a full-chip reconfiguration due to the reduced data traffic.
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Figure 3: The different basic models of reconfigurable computing: single context, multi-context,
and partially reconfigurable.  Each of these designs is shown performing a reconfiguration.

For all of these run-time reconfigurable architectures, there are also a number of compilation issues that are
not encountered in systems that only configure at the beginning of an application.  Compilers must consider
the run-time reconfigurability when generating the different circuit mappings, not only to be aware of the
increase in time-multiplexed capacity, but also to schedule reconfigurations so as to minimize the
configuration overhead.  This is in order to ensure that the overhead of the reconfiguration does not eclipse
the benefit gained by hardware acceleration.  Stalling execution of either the host processor or the
reconfigurable hardware because of configuration is clearly undesirable.  In some cases over 98% of
execution time can be spent in reconfiguration [9].  Therefore, fast configuration is an important area of
research for run-time reconfigurable systems.

There are a number of different tactics for reducing the configuration overhead.  First, loading of the
configurations can be timed such that the configuration of the reconfigurable device overlaps as much as
possible with the execution of instructions by the host processor.  Second, compression techniques can be



introduced to decrease the amount of configuration data that must be transferred to the system.  Third, the
number of times a reconfiguration is necessary can be reduced through hardware optimizations that help
prevent programmed configurations that will be reused from being unnecessarily replaced by incoming
configurations.  Finally, the actual process of transferring the data from the host processor to the
reconfigurable hardware can be modified to include a configuration cache, which could provide a faster
reconfiguration.

Conclusion

Reconfigurable computing is becoming an important part of research in computer architectures and
software systems.  By placing the computationally intense portions of an application onto the
reconfigurable hardware, the overall application can be greatly accelerated.  This is because reconfigurable
computing combines the benefits of both software and ASIC implementations.  Like software, the mapped
circuit is flexible, and can be changed over the lifetime of the system or even the execution time of an
application.  Similar to an ASIC, reconfigurable systems provide a method to map circuits into hardware,
achieving far greater performance than software as a result of bypassing the fetch-decode-execute cycle of
traditional microprocessors, and parallel execution of multiple operations.

Reconfigurable hardware systems come in many forms, from a configurable functional unit integrated
directly into a CPU, to a reconfigurable co-processor coupled with a host microprocessor, to a multi-FPGA
stand-alone unit.  The level of coupling, granularity of computation structures, and form of routing
resources are all key points in the design of reconfigurable systems.

Compilation tools for reconfigurable systems range from simple tools that aid in the manual design and
placement of circuits, to fully automatic design suites that use program code written in a high-level
language to generate circuits and the controlling software.  The variety of tools available allows designers
to choose between manual and automatic circuit creation for any or all of the design steps.  Although
automatic tools greatly simplify the design process, manual creation is still important for performance-
driven applications.

Finally, run-time reconfiguration provides a method to accelerate a greater portion of a given application by
allowing the configuration of the hardware to change over time.  Apart from the benefits of added capacity
through the use of virtual hardware, run-time reconfiguration also allows for circuits to be optimized based
on run-time conditions.  In this manner, the performance of a reconfigurable system can approach or even
surpass that of an ASIC.

Reconfigurable computing systems have shown the ability to greatly accelerate program execution,
providing a high-performance alternative to software-only implementations.  However, no one hardware
design has emerged as the clear pinnacle of reconfigurable design.  Although general-purpose FPGA
structures have standardized into LUT-based architectures, groups designing hardware for reconfigurable
computing are currently also exploring the use of heterogeneous structures and word-width computational
elements.  Those designing compiler systems face the task of improving automatic design tools to the point
where they may achieve mappings comparable to manual design for even high-performance applications.
Within both of these research categories lies the additional topic of run-time reconfiguration.  While some
work has been done in this field as well, research must continue in order to be able to perform faster and
more efficient reconfiguration.  Further study into each of these topics is necessary in order to harness the
full potential of reconfigurable computing.
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