
Configuration Relocation and Defragmentation for FPGAs

Katherine Compton, James Cooley, Stephen Knol
Department of Electrical and Computer Engineering

Northwestern University
Evanston, IL USA
kati@ece.nwu.edu

Scott Hauck
Department of Electrical Engineering

University of Washington
Seattle, WA USA

hauck@ee.washington.edu

Abstract

Custom computing systems exhibit significant
speedups over traditional microprocessors by
mapping compute-intensive sections of a
program to reconfigurable logic [Hauck98].
However, the number and frequency of these
hardware-mapped sections of code are limited
by the requirement that the speedups provided
must outweigh the considerable cost of
configuration. Research has shown that the
ability to relocate and defragment
configurations on an FPGA dramatically
decreases the overall configuration overhead
[Li00]. This increases the viability of mapping
portions of the program that were previously
considered to be too costly. We therefore
explore the adaptation of a simplified Xilinx
6200 series FPGA for relocation and
defragmentation. Due to some of the
complexities involved with this structure, we
also present a novel architecture designed from
the ground up to provide relocation and
defragmentation support with a negligible area
increase over a generic partially reconfigurable
FPGA.

Introduction

One application of FPGAs is that of reconfigurable
computing – the use of a run-time reprogrammable
device operating as a customizable coprocessor or
functional unit alongside a main microprocessor
[Hauck98]. This reconfigurable logic is used to
emulate custom hardware for the acceleration of one or
more compute-intensive portions of a program.
Unfortunately, the speedups attainable by the use of
reconfigurable logic are limited by the large
configuration overheads incurred each time a function
is loaded into the array [Li00].

Li compared the total configuration overheads
exhibited during program execution by different FPGA
types acting as the reconfigurable coprocessor. Two of
these types are the serial and the partially

reconfigurable FPGAs. The traditional serial FPGA
loads configuration information for the entire chip in a
bit-serial fashion, while the partially reconfigurable
FPGA, such as the Xilinx 6200, can be selectively
programmed during runtime in an addressable manner.
The partially reconfigurable FPGA was determined to
suffer as little as 14% of the configuration overhead of
the serial FPGA.

Variations on the partially reconfigurable FPGA were
also examined. Relocation, the ability to determine at
runtime the actual location in the array of a pre-
compiled configuration, was shown to have up to 35%
less configuration overhead than the generic partially
reconfigurable FPGA, and up to 87% less than the
serial version. Furthermore, the ability to defragment
the configurations already present on the array to
consolidate unused computation area decreased the
overhead by up to 36% over the partially
reconfigurable FPGA with relocation [Li00].

These increases in efficiency can affect the number of
program areas suitable for FPGA acceleration. The
configuration overhead of a serial or even a basic
partially reconfigurable FPGA might outweigh the
speedups obtained through the use of the
reconfigurable logic for a particular portion of the
program. In this case, this section should not be
mapped to the reconfigurable coprocessor. However,
with the lower configuration cost of the relocation and
defragmentation FPGAs, the guidelines for approving a
function for acceleration in hardware are relaxed,
increasing the potential for sections of a program to
qualify for translation to the reconfigurable
coprocessor, and increasing the overall speedup
attainable.

In order to leverage the advantages of relocation, we
examine the refitting of the Xilinx 6200 into a
relocation-enabled FPGA. Later we discuss the issues
in applying the idea of defragmentation to the updated
relocation 6200. Finally, we will propose a novel
architecture designed specifically from the ground up
for partial configuration, relocation and
defragmentation.

2

Example of Relocation

Although the partially reconfigurable FPGA design is
powerful, it faces limitations imposed by configuration
locations determined at compile time. If two different
configurations were mapped at compile time to
overlapping locations in the FPGA, only one of these
configurations can be present in the array at any given
moment. They cannot operate simultaneously.
However, if somehow the final FPGA location could
be determined at runtime, one or both of these
overlapping configurations could be shifted to a new
location that was previously unused to allow for
simultaneous use.

Figure 1 illustrates a situation in which relocation
could be used. The darkly shaded mapping is already
present on the FPGA. The lightly shaded mapping is a
new mapping that is also to be placed on the FPGA.
However, since the first and second configurations
have several cell locations in common, they cannot
both be present on a traditional partially reconfigurable
FPGA simultaneously.

However, an FPGA with relocation ability can modify
the second configuration to fit the unused space on the
grid, thereby allowing both mappings to be present
without one overwriting the other's information.
Figure 1 shows the steps taken to relocate the second
configuration to available cells.

Xilinx 6200 for Relocation

The primary reason to choose the Xilinx 6200 FPGA to
adapt for use with configuration relocation is that it has
an addressable format for the programming bits,
allowing arbitrary portions of the FPGA to be
configured or reconfigured while the rest of the chip
remains unmodified. We refer to this ability as partial
reconfiguration. In addition, the cell layout and local
routing are regular, ensuring that the functionality of
the FPGA is the same regardless of location in the

array with only a few exceptions that will be discussed
later.

As we will demonstrate later in this paper, the
relocation of a configuration requires modifications to
the programming data and/or programming addresses
on a cell-by-cell basis. Although the main CPU could
perform these manipulations, it would require effort
proportional to the size of the configuration.

Alternatively, we can create the logic necessary to
implement the manipulations in hardware placed in or
near the FPGA chip itself. Instead of changing the
bitstream before it is output to the FPGA, the CPU
could pre-append a message to the relocation logic to
the configuration bitstream. This message would
contain a high-level description of which alterations
should be made to the entire configuration. The
relocation logic would then calculate the actual
changes to the bitstream as the configuration
information enters the FPGA. The relocation hardware
will be able to move, flip, and rotate multi-cell
mappings to make the most efficient use of the cell
array. This minimizes the effort required on the part of
the CPU to efficiently use the reconfigurable logic,
leaving it available for other computing tasks.

In order to create such reconfiguration hardware, it is
convenient to consider a somewhat idealized FPGA
similar to the 6200 [Xilinx96]. Like the 6200, this
idealized FPGA allows random access to any cell in its
array. However, we will assume that its long-distance
routing is flexible and can be configured to and from
any cell. This removes the irregularity of the 6200
hierarchical routing. We will first determine the basic
needs of relocation hardware by examining this
abstract model. Later, we will use this model to
discuss an actual reconfiguration hardware design for
the 6200.

Abstract Relocation

Each configuration has seven distinct permutations of
its structure. This does not include simple offset

Configuration
Present on FPGA

Incoming
Configuration Conflicts Reconfiguration

Figure 1: In some situations an incoming configuration maps to the same location as
an existing configuration. If the incoming mapping is relocated, it may be possible to
allow both configurations to be present in the FPGA concurrently.

3

operations to shift the entire configuration to a new
location without altering its orientation. An example
configuration and its seven permutations are shown in
Figure 2. These seven manipulations can be
decomposed into combinations of three distinct basic
movements: a vertical flip, a horizontal flip, and a
rotation of 90 degrees. With combinations of these
movements, any basic manipulation shown in Figure 2
can be achieved.

When relocating a mapping, there are a few
requirements that we need to meet in order for its
functionality to be preserved. The routing programmed
into each cell must be changed to reflect the overall
rotation or flip of the configuration. Each cell in a
mapping can have routing to and from its four
immediate neighbor cells that must be maintained
relative to those neighbors when the mapping is
moved. For example, if a cell routes to its neighbor to
the east and a horizontal flip is performed, the original
cell must now route to that same neighbor which is
now found to its west. Alternately, a cell that routes to
a cell to the north and belongs to a configuration that is
then rotated 90 degrees clockwise would be changed to
route to the east.

A cell must also be shifted by the same horizontal and
vertical offsets as the entire configuration being
relocated. If a mapping is to be moved one column to
the east and two rows to the north, each individual cell
must be relocated one column to the east and two
columns to the north. Additionally, each cell must
maintain its position relative to the others so that all

routes between cells are preserved. In the rotation
example given previously, the northern neighbor must
be moved so as to become the eastern neighbor to
preserve the correct routing structure.

In order to ensure that the relative routing remains
intact, the reconfiguration hardware can operate on a
cell-by-cell basis, changing input and output directions
based on the manipulation or manipulations being
performed. This can be performed using either
combinational logic or lookup tables. Performing
translation (shift) operations also involves very little
computation. The row and column offsets are simply
added to the original row and column addresses of each
individual cell. No other manipulations are required
for this operation on our idealized 6200 FPGA.

Maintaining relative position during a complicated
operation such as a flip or a rotate is somewhat more
complex. These manipulations are easiest to
conceptualize as operations performed on one large
object. In actuality, however, this one large object is
made up of many smaller objects. Each of these must
be altered to a different degree in order to preserve the
original larger object after the manipulation is
complete. In our case, the large object is the full
configuration, and the smaller objects are the discrete
FPGA cells that form that configuration. Although all
of the cells may be flipped or rotated to the same
degree as the configuration itself, they each have their
own particular offsets to move in order to preserve the
relative arrangement between cells within the
configuration.

flip horizontal flip horizontal &
rotate 90º

flip vertical flip vertical &
rotate 90º

original
configuration

rotate 90º flip vertical &
horizontal

flip vertical &
horizontal &
rotate 90º

Figure 2: The seven primary permutations of a configuration.

0 0 0 0

0 0

4 1

0

4 1

0

1 2 3

6 5 2 6 5 2 4 1

4 5

3 3 6 5 2

6

3

rotate mapping 90º offset entire mapping
horizontally by -1 coluimn

offset entire mapping
vertically by +1 column, final
result

mapping original
configuration

Figure 3: An example relocation using a 90 degree rotation and an offset.

4

However, if we temporarily consider a configuration to
occupy the entire array, these operations are simplified
into short equations on a per-cell basis using the
original row and column addresses and the maximum
row and column addresses. For example, consider a
configuration that is to be flipped horizontally. Cells
that are in column c will be relocated to column maxcol
- c. Changing the column address in this matter
ensures that each cell is the same distance from the
west border as it used to be from the east border, and
vice versa. The flip is then followed by a shift of the
entire configuration to place it in the desired final
location.

We show an example of a rotation and an offset
operation in Figure 3 that further demonstrates this
idea. The cells in the figure are numbered in order to
illustrate the location changes for the cells during the
relocation of the configuration. In order for a mapping
to be successfully manipulated, the relative positions
and routing (as represented here by the numbers)
should match the original arrangement. The first pane
shows an initial mapping.

First the entire array is rotated. In this step, if cell "1"
originally routed to cell "2" to the east, it must now be
changed to route to cell "2" in the south and its position
changes from <0,1> to <3,0>. If r is the original row
position for any cell and c is the original column
position, then rotating the mapping changes each cell

<c, r> to <maxcol–r, c>. The next pane shows the
entire mapping moved one column to the west. In this
case, the position of each cell changes from <c, r> to
<c+m, r> where m is the column translation offset.
Finally, the mapping is moved south one row. Here, <c,
r> becomes <c, r+n> where n is the row translation
offset. For this example, m = -1 and n = 1. With a
series of simple calculations, a configuration has been
fully relocated.

With the ability to do the three complex movements
and the two offset operations, any reconfiguration of a
cell mapping is possible in our idealized FPGA. Table
1 details the equations for these five manipulations.
Any reconfiguration hardware that we design will take
an incoming mapping, pass each cell of it through a
pipeline of these five stages, and output a fully
reconfigured mapping. Figure 4 shows this pipeline
and its operation on the example of Figure 1.

Abstract Relocation Ideas on the
6200

The purpose thus far has been to propose an abstract
way of relocating cell-based FPGA mappings. We are
in essence designing hardware that takes as input the
information for a cell (its configuration and location
bits) and changing it according to some master
direction from the CPU. Given the desired changes and
the configuration data of each cell, our reconfiguration

Type Old Location New Location
Vertical Flip <c, r> <c, maxrow-r>
Horizontal Flip <c, r> <maxcol-c, r>
Rotate 90º <c, r> <maxcol-r, c>
Vertical Offset (by n) <c, r> <c, r+n>
Horizontal Offset (by m) <c, r> <c+m, r>

Table 1: The equations to determine the relocated coordinates for a cell.

Relocation Pipeline

flip
horizontal

rotate
90°

vertical
offset

horizontal
offset

flip vertical

Incoming Configuration Final Configuration

Stepwise Changes

Figure 4: The relocation pipeline and its operation on the example of Figure 1.

5

hardware should be able to achieve any relocation in
the ideal model of our FPGA. We will now discuss
how this can be implemented on our simplified 6200.
In particular, we will examine how to change the actual
position and routing information of the cells.

Each cell's routing and functionality are controlled by
multiplexers, that are in turn selected with SRAM
configuration bits local to each cell. Figure 5a shows a
diagram of a 6200 cell's inputs. There are three inputs
to the function unit within the cell, and these three
inputs come from the three multiplexers X1, X2, and
X3 respectively. The output of these multiplexers can
be selected from eight locations. N, S, E, and W are
the neighboring cells’ outputs to the north, south, east
and west, respectively. N4, S4, E4 and W4 are the
special long distance routes built into the 6200 and are
located in the indicated directions. Outputs of each cell
follow similarly and are shown in Figure 5b.

Cell outputs are chosen from the output of the function
unit or from the outputs of other cells (effectively
routing through a cell). Two bits of SRAM data for
each multiplexer are needed to select from these four
possible outputs. Figure 6 shows the configuration

information for the cell routing. Although these bytes
contain the bits labeled CS, RP, Y2, and Y3 which
control the function unit of the cell, we are interested in
examining only the bits which control the input and
output multiplexers. In order to change a cell's
configuration the incoming data destined for these
three bytes of SRAM must be altered.

Each mapping manipulation (the rotate 90 degrees and
the horizontal and vertical flips) has a distinct set of
operations on the routing information that must be
made on a cellular level. For instance, to flip a
mapping vertically, if a northern input was selected by
any of the multiplexers of some cell, it now must be
changed to be a southern input and the cell's horizontal
position must change from <c, r> to <maxcol–c, r>.
We similarly change the output routing – north
becomes south, south becomes north, the row address r
becomes maxrow – r, and so forth. For a vertical flip,
east/west routing changes do not occur.

A cell's location is determined by the memory address
associated with the three data bytes that define its
functionality, as shown in Figure 7. This address is
composed of a word containing 14 bits. Bits 13:8 and

Function
Unit

S E W

Sout

Wout

N
S
W

N E W

Nout

N
S
E

Eout

Function
Unit

N
S E
W

N4
S4 E4

W4

N
S

E
W

N
4

S4
E

4
W

4

N
SE

W
N4

S4E4
W4

X1

X2

X3

S S4

N N4

E

E4

W

W4

(a) (b)

Figure 5: The 6200 cell (a) input structure (b) output structure

DATA BITColumn
Offset
<1:0> 7 6 5 4 3 2 1 0

00 North East West South

01 CS X1[2:0] X2[1:0] X3[1:0]

10 RP Y2[1:0] Y3[1:0] X3[2] X2[2]

Figure 6: The three data bytes that control the input and output multiplexers.

6

5:0 denote the column and row of the cell respectively.
Bits 7:6, the column offset, control which of the three
data bytes shown in Figure 6 are to be written to or
read from. To move the location of a particular cell,
these 14 bits must be changed appropriately.

For the relocation example of Figures 1 and 4, Figure 8
shows the data changes at each stage in order to
relocate cell #1. The actual recalculated values are
highlighted, and arrows indicate exchanges of the
routing information within the cell due to changes in
the cell's orientation. Note that the initial routing
configuration is arbitrary but is intended to be realistic
given the mapping layout.

First we examine the Vertical Flip stage. X1 is initially
set to receive E4 and a vertical flipping of a cell does
not change the east-west routing directions. Therefore
X1 remains unchanged. Since X2 and X3 are set to N
and S respectively, their roles swap when the cell is
flipped. Additionally, because the Eout and Wout
multiplexers output values from the (former) North and
South, their outputs are set to the opposite values due
to the new orientation. The coordinates of the cell also
are changed from <c, r> to <c, maxrow–r>, but in this r
is coincidentally equal to max row – r.

At the next stage, the Horizontal Flip, the output of the
X1 multiplexer changes to W4 because of the exchange
of the east and west directions. X2 and X3 remain
unchanged because their values are South and North,
and these directions are unaffected by a horizontal flip.
Eout and Wout exchange values, and Nout changes

from east to west. Sout is unchanged because it
outputs from the function block. The relative position
of the cell is maintained by changing its coordinates
from <c, r> to <maxcol–c, r>.

The 90 degree rotation is somewhat more complicated.
It involves changing routing so that it is associated with
the next most clockwise compass point. Westerly
inputs become northerly ones. South would become
west, east would become south, and north would
become east. Cell outputs are also quite complicated.
Although Nout was originally west, it remains west
because previously Wout was set to South. Similarly,
Eout is set to North because before the rotation Nout
was set to West, Sout is set to East because previously
Eout was set to North, and Wout is set to the Function
block output because Sout was originally that output.
The coordinates are then changed from <c, r> to
<maxcol–r, c>.

Finally, in the Vertical and Horizontal Offset Stages,
each cell of the mapping is moved one row to the south
(<c, r> becomes <c, r+1>) and 2 columns to the west
(<c', r'> becomes <c'+2, r'>).

From this type of analysis, a distinct set of logic
equations can be derived. Figure 9 lists the changes
necessary for the most complicated stage, the rotation
of 90 degrees.

The table in Figure 9 shows the changes that would
occur to the various SRAM bits for a rotation of 90
degrees. For instance, if the SRAM bits corresponding

Column
<5:0>

Column Offset
<1:0>

Row
<5:0>

13 12 11 10 9 8 7 6 5 4 3 2 1 0

Figure 7: Address word format for the three programming bytes of Figure 6.

Initial
Configuration

Vertical
Flip

Horizontal
Flip

Rotate
90 Degrees

Vertical
Offset

Horizontal
Offset

Final
Configuration

X1 E4 110 E4 110 W4 100 N4 111 N4 111 N4 111 N4 111

X2 N 011 S 000 S 000 W 001 W 001 W 001 W 001
Function

Unit
Inputs X3 S 000 N 011 N 011 E 001 E 001 E 001 E 001

Nout F 00 E 10 W 11 W 11 W 11 W 11 W 11

Eout N 01 S 11 N 01 N 01 N 01 N 01 N 01

Sout E 01 F 00 F 00 E 01 E 01 E 01 E 01

Function
Unit

Outputs
Wout S 11 N 10 S 11 F 00 F 00 F 00 F 00

Col Row Col Row Col Row Col Row Col Row Col Row Col Row
Coords

4 2 4 2 0 2 2 0 2 1 4 1 4 1

Figure 8: Complex relocation changes for cell #1 in Figure 4. Darkly shaded areas
are values that must be recomputed for the operation performed. Arrows indicate
exchanges of values due to reorientation of directions.

7

to multiplexer X1 are set to "W4" encoded by "100",
then it changes to "N4" encoded by "111". The output
multiplexers are slightly different. For instance,
multiplexer Eout will change its state to match
whatever Nout was in the incoming configuration. The
table shows all such changes needed in the 6200 for
rotations of 90 degrees.

Derived from the table in Figure 9, the equations
shown in Figure 10 take as input the current state of the
various multiplexers and output what the state would
become after a rotation of 90 degrees (shown with the '
notation). For instance, for X1, the rotated X1[0] is
dependent on the incoming bits 0, 1, and 3 of X1 but is
also dependent on bit 1 of the rotated X1. The rotation
of 90 degrees has the most complex equations of the
three basic manipulations, yet these equations can be
implemented in simple logic. Implementing the row

and column changes is also trivial, because it involves
simple additions and subtractions.

An overall Relocation Pipeline of these changes can be
created for the 6200. Each stage in the pipeline
corresponds to one of our basic movements (as
illustrated in Figure 4) and incoming configurations
pass through each stage either modified or untouched
by the relocation hardware depending on simple
instructions from the CPU. The CPU itself will require
only a constant amount of computation to generate the
settings for the relocation hardware, independent of the
size of a configuration. However, if we forced the
CPU to perform each relocation operation on each
FPGA cell, it would require computation time
proportional to the number of cells in the configuration.
Using the custom relocation hardware frees the CPU
for other computing tasks.

Figure 9: The SRAM bit changes for the input and output multiplexers for the 90
degree relocation operation

Initial State Final State
N 011 E 001
S 000 W 010
E 001 S 000
W 010 N 011
N4 111 E4 110
S4 101 W4 100
E4 110 S4 101
W4 100 N4 111

X1, X3 Multiplexers

Initial State Final State
N 011 E 010
S 000 W 001
E 010 S 000
W 001 N 011
N4 111 E4 101
S4 110 W4 100
E4 101 S4 110
W4 100 N4 111

X2 Multiplexer

Eout Multiplexer Wout Multiplexer
Initial Nout

State
Final Eout

State
Initial Sout

State
Final Wout

State
N 01 E 10 S 11 W 01
E 10 S 11 E 01 S 11
W 11 N 01 W 10 N 10
F 00 F 00 F 00 F 00

Sout Multiplexer Nout Multiplexer
Initial Eout

State
Final Sout

State
Initial Wout

State
Final Nout

State
N 01 E 01 N 10 E 10
S 11 W 10 S 11 W 11
E 10 S 11 W 01 N 01
F 00 F 00 F 00 F 00

]2[1]2[1

)]1[1]2[1(]0[1]1[1]2[1]0[1]1[1

])1[1]2[1(]0[1]1[1]1[1]0[1

XX

XXXXXXX

XXXXXX

=′
+=′

++′=′

]2[1]2[2

]0[1]2[1]1[1]2[1]1[2

]1[1]0[1)]0[1]2[1(]1[1]0[2

XX

XXXXX

XXXXXX

=′
+=′

′+=′

]2[3]2[3

)]1[3]2[3(]0[3]1[3]2[3]0[3]1[3

])1[3]2[3(]0[3]1[3]1[3]0[3

XX

XXXXXXX

XXXXXX

=′
+=′

++′=′

]0[]1[]0[]1[]1[

]1[]0[

NoutNoutNoutNoutEout

NoutEout

+=′

=′

]0[]1[]0[]1[]1[

]0[]0[

SoutSoutSoutSoutWout

SoutWout

+=′

=′

]1[]1[

]0[]1[]0[]1[]0[

EoutSout

EoutEoutEoutEoutSout

=′
+=′

]1[]1[

]0[]0[

WoutNout

WoutNout

=′
=′

Sout Multiplexer

Nout Multiplexer

Wout Multiplexer

Eout Multiplexer
X1 Multiplexer

X2 Multiplexer

X3 Multiplexer

Figure 10: The logic equations necessary to calculate the individual bit changes of
Figure 9. These relocation equations are general, and apply to any 90 degree rotation.

8

Configuration Defragmentation

Using the relocation hardware already discussed, we
are able to implement another feature for improved
FPGA configuration: defragmentation. The idea of
defragmentation is to shift configurations already
present on the FPGA in order to consolidate unused
area. This unused area can then be used to program
additional configurations onto the chip that may not
have fit in the previous available space. This is a
similar concept to memory fragmentation /
defragmentation, although here it is extended to two
dimensions.

We can use the hardware and movements that we have
described to take configurations that are already loaded
onto the cell array and move them elsewhere on the
array. If we use the same Relocation Pipeline that we
have designed, this operation consists of reading data
from the array, running it through the pipeline and
writing it back to another location. This may not
necessarily be the best and quickest way to achieve
defragmentation because it involves both a
configuration read and a configuration write.

Alternatively, we could sacrifice some of the flexibility
provided by the relocation hardware and employ a
defragmentation scheme that shifts data directly from
cell to cell so that a mapping would be moved
horizontally or vertically in single column or row
increments. However, this would add a significant
amount of routing to a 6200-like FPGA, given that
connections would have to be added to relay
programming bits from each cell to each of its
neighbors. In both of these cases, an algorithm must be
created that ensures that we not write over any cell that
we have not moved.

Limitations of the 6200

The ideas for relocation hardware have been built thus
far on some underlying assumptions. For example, the
design of our relocation logic requires that
configuration data stream always has at least its the
data bytes corresponding to column offsets "01" and
"10" (in Figure 7) in the same order and consecutively,
because the data for multiplexers X2 and X3 span these
two bytes. The addressable configuration method of
the 6200, however, does not guarantee that these bytes
appear in a particular order or even consecutively. The
equations of Figure 10 swap data from one byte to
another without accounting for the fact that the data
bits are loaded one byte at a time. In some way we
must ensure that both of these bytes are available at the
same time in order to perform relocation mappings.

Also, since the data from more than one byte is being
used, there needs to be a "lookahead" scheme for our
Relocation Pipeline that is able to read and use all the
data from these multiplexers at the same time.

A simple way to force this is to modify the Xilinx tool
that outputs the configuration data. The tool could be
reprogrammed to always output those two bytes in
sequence and one immediately after the other.
Alternately, the 6200 system itself could be changed
such that the multiplexer programming bits are
rearranged to keep necessary data for each computation
together.

Another limitation placed on relocation by the actual
6200 design is that in reality we are not able to make
arbitrary movements of mappings. Although the 4-cell
spanning routing (N4, E4, etc.) does add some distance
routing capability to the 6200 array, it can only be
written to near the borders of a 4x4 grouping of cells.
This severely limits where we can and cannot move
mappings. If a mapping contains 4x4 routing, we are
limited to horizontal and vertical movements in
multiples of four that preserve this routing. A similar
phenomenon occurs at the border of a 16x16 grouping
of cells. We have also ignored the changes that would
need to be made to the programming bits of the routing
switches at these borders during a relocation operation.

Although we can create simple relocation hardware for
the simplified 6200 design, introducing the realities of
the actual 6200 complicates our hardware and removes
some of its flexibility.

New Architecture

We propose a new architecture designed specifically to
exploit the benefits of relocation and defragmentation.
We will refer to this architecture as the R/D
(Relocation / Defragmentation) FPGA. First we
examine the guidelines used for the design creation,
then we discuss the details of the actual architecture.
Next we show a few examples of the operation of this
new FPGA. Finally, we examine a few possible
extensions to the R/D architecture.

Design Issues

Using a few simple concepts in the design phase of the
FPGA, we can ensure that the architecture is suitable
for relocation and defragmentation. The first is that of
partial reconfiguration. The ability to selectively
program portions of the FPGA is critical to the
philosophy of reconfiguration and defragmentation.
This method of operation depends on the use of

9

multiple independent configurations in use
simultaneously on a single FPGA. We therefore base
the R/D FPGA on a generic partially reconfigurable
core, as shown in Figure 11a.

The second idea is homogeneity. If each cell in the
structure is identical, there are no functional obstacles
to moving a configuration from one location to any
other location within the boundaries of the array. In
the same manner, requiring the routing structure to be
homogenous removes any placement limitations for
routing reasons. This removes the difficulty that the
hierarchical routing structure presents in the 6200.
Although the exact structure of the logic cell and the
routing for the R/D FPGA has been left open, we do
make homogeneity a requirement. Many current
commercial FPGAs support this, including the Xilinx
4000 and 6200 designs.

The third concept is virtualized I/O. Using a bus-
based input/output structure provides us with a
location-independent method to read in and write out
data from the individual configurations.

Configurations are therefore not limited by I/O
constraints to be placed near the FPGA pins, plus the
I/O routing remains unchanged when the configuration
is mapped to a new location. Severaly architectures
already support this, including Chimaera [Hauck97],
PipeRench [Hauser97], and GARP [Goldstien99].

One type of virtualized I/O system is shown in Figure
12. This structure includes four global input values per
column, and two global output values per column. A
cell can select its inputs from the global input lines
using a multiplexer. The actual input value read
therefore only depends on the setting of the
multiplexer. In this structure, cells can only output to a
global output line when the corresponding output
enable line is set to high for that cell's row. These
enable lines are global, and a control structure is
required to ensure that only one row at a time may
output to any given line.

In the Chimaera system for example, there are Content-
Addressable-Memories located next to each row of
cells. When the CPU wishes to read the output of a

column decoder, input tristate drivers

programming
data

R
ow

 decoder

row
address

SRAM array

column
address

staging area

programming
data

R
ow

 decoder

row
address

SRAM array

staging area
address

offset
select

read write

offset
registers

Figure 11: (a) a basic partially reconfigurable FPGA architecture (b) the relocation /
defragmentation FPGA architecture

(a) (b)

Logic
Cell

input lines output lines

row
output
enable

Logic
Cell

input lines output lines

row
output
enable

Figure 12: A virtualized I/O structure with four input lines and two output lines. Two
cells in one row are shown here. The input and output lines are shared between rows.
Although multiple rows may read an input line, only one row at a time may write to
any given output line.

10

configuration, it sends the configuration number to the
array, which checks this value against the CAM values.
If a row's CAM is equal to the configuration number
sent by the CPU, the output is enabled for that row
[Hauck97].

The fourth important idea is that of one-dimensionality.
Some of the complexities encountered even with the
idealized 6200 can be removed when the FPGA is
designed with a row-based structure similar to
Chimaera [Hauck97] and PipeRench [Goldstein99].
These architectures consider a single row of FPGA
cells to be an atomic unit when creating a
configuration, where each row forms a stage of the
computation. The number of cells in a row is arbitrary,
but in general assumed to be the same width as the
number of bits in a data word in the host processor.
This, in essence, reduces the configurations to one-
dimensional objects, where the only allowable
variation in area is in the number of rows used.
Rotation, horizontal or vertical flipping, or horizontal
offset operations are no longer necessary. The only
operation required for relocating a configuration is to
change the vertical offset.

Not only does this one-dimensional structure reduce
the hardware requirements for the relocation
architecture, it also simplifies the software
requirements for determining where a configuration
can be relocated to. It is no longer a two-dimensional
operation. Also, a defragmentation algorithm that
operates in two dimensions with possibly odd-shaped
configurations could be quite cumbersome.
[Diessel97] discusses a method for performing 2-D
defragmentation. However, when the problem is only
one-dimensional, an algorithm based on those for
memory defragmentation can be applied.

Because of the one-dimensionality, the virtualized I/O
is also simplified. Instead of including input and
output wires along each column and each row of the
FPGA, these lines are only necessary for each column,
as described earlier in the example corresponding to
Figure 12.

Architecture Specifics

There are several aspects of a partially reconfigurable
system that appear within the R/D design. The
memory array itself is composed of the same type of
array of SRAM bits. These bits are read/write enabled
by the decoded row address for the programming data.
However, the column decoder, multiplexer, and input
tristate drivers have been replaced with a structure we
term the "staging area", as shown in Figure 11b.

This staging area is a small SRAM buffer, which is
essentially a set of memory cells equal in number to
one row of programming bits in the FPGA memory
array, where a row of logic cells contains a number of
rows of configuration bits. Each row, and therefore the
staging area, contains several words of data. The
staging area is filled in an addressable fashion one
word at a time. Once the information for the row is
complete in the staging area, the entire staging area is
written in a single operation to the FPGA's
programming memory at the row location indicated by
the row address. In this manner the staging area acts as
a small buffer between the master CPU and the
reprogrammable logic. This is similar in function to a
structure proposed by Xilinx [Trimberger95].

There is a small row decoder for the staging area in
order to enable addressable writes/reads to/from it.
The row decoder determines which of the words in the
staging area is being referenced at a given moment. No
column decoder is required because we construct the
staging area such that although there are several rows,
there is only one word-sized column.

The chip row decoder includes a slight modification,
namely the addition of two registers, a 2:1 multiplexer
to choose between the two registers, and an adder,
where these structures are all equal in width to the row
address. This allows a vertical offset to be loaded into
one or more of the registers to be added to the
incoming row address, which results in the new
relocated row address.

One of these registers is the "write" offset register,
which holds the relocation offset used when writing a
configuration. The other offset register is the "read"
register, which is used during defragmentation for
reading a relocated configuration off of the array. For
simplicity, this version of the R/D hardware does not
allow configurations to be relocated horizontally to
different columns, although the basic architecture does
not specifically exclude the possibility.

Although a basic partially reconfigurable FPGA
requires a column decoder to determine which data
word within the row should be read from or written to,
a column decoder between the staging area and the
array is not necessary in the R/D design. The staging
area is equal in width to the array and therefore each bit
of the staging area is sent out on exactly one column.

Finally, although we have stated that our FPGA
contains a homogeneous cell and routing structure, as
well as virtualized I/O, the specifics of these structures
are not dictated by the memory structure. The
particular design is unrestricted because the actual

11

architectures do not influence the discussion of the
philosophy and operation of the configuration aspect of
the R/D FPGA.

Example of R/D Operation

Figure 13 illustrates the steps involved in writing a row
of configuration data to the FPGA SRAM array. Each
step shown uses one read/write clock cycle. The words
are loaded into the staging area one at a time. Once the
words are loaded into the staging area, they are all
written in a single write cycle to the memory array
itself. Although the figure shows the words loaded in a
particular order into the staging area, this is not
necessarily the case. The staging area is word-
addressable, allowing it to be filled in an arbitrary
order. Furthermore, the example shows four words
filling the staging area. This is for illustrative purposes
only. The staging area can be any size, but is expected
to be many words wide.

Relocation of a configuration is accomplished by
altering the row address provided to the row decoder.
This allows for a simple way to dynamically locate
individual configurations to fit available free space.
Figure 14 shows the steps to relocate a configuration as
it is being loaded into the FPGA.

First the offset value required to relocate a
configuration is loaded. In this case, a value of "3" is
written to the write offset register to force the incoming
configuration to be relocated directly beneath the
configuration already present in the FPGA.

Next, the CPU or the DMA loads each configuration
row one data word at a time into the staging area. The
entire staging area is then written to the destination row
of the FPGA in a single operation. The actual address
of this row is determined by adding the write offset
register to the destination address for that row.

1 12 123

1234 1234

1234

Figure 13: A single row of configuration data is written to the FPGA by performing
multiple word-sized writes to the staging area followed by a single write from the
staging area to the array. Each step shows a single write cycle.

Configuration:

Figure 14: An example of a configuration that is relocated as it is written to the
FPGA. The actual loading is done one data word at a time, but is shown here as one
step for simplicity.

12

For each row of the configuration there are as many
writes to the staging area as there are words in a row,
followed by one write from the staging area to the
FPGA. This is plus the single write to the offset
register per configuration in order to relocate a
configuration to an empty location. The total number
of read/write cycles to write a configuration to the
array is therefore:

<# rows> * (<staging area size> / <data word size> + 1) + 1

If we consider a number of full row width
configurations that would have been programmed onto
a basic partially reconfigurable FPGA, we are only
adding <# rows> + 1 cycles to the configuration time
in order to allow relocation.

Defragmentation of the R/D FPGA requires more steps
than a simple relocation operation. Rows must be
moved from existing locations on the FPGA to new
locations without overwriting any necessary data. This
is particularly apparent when the new location of a
configuration partially overlaps the current location.
Depending on the order of the row moves, one or more
of the rows of information could be lost. In particular,
if a configuration is to be moved "up" in the array, the
rows should be moved in a topmost-first order. For a
configuration that is to be moved "down", the rows
should be moved in a bottommost-first order. Figure 15
shows an example of the correct order to move rows in
a configuration to prevent loss of data when the
configuration is being moved "up" in the array.

Here we use both of the offset registers. The read
register is used to store the offset of the original

location of the configuration. The write register holds
the offset of the new configuration location.

First, using a row address of 0 and a read offset of 6,
the top row of information for the second configuration
is read back into the staging area.. The row is then
written back out to the new location using the same
row address, but a write offset of 4. The address sent
to the row decoder is incremented (although the
contents of the two registers remain unchanged), and
the procedure continues with the next row.

Using two registers instead of one allows each row to
be moved with a single read and a single write, without
having to update the register as to which address to
read from or write to. A 1-bit signal controls the 2:1
multiplexer that chooses between the two signals.
There are also two cycles necessary to initialize the two
registers. The total number of read/write cycles
required to move a configuration is:

<# rows> * 2 + 2

This structure also allows for partial run-time
reconfiguration, where most of the structure of a
configuration is left as-is, but small parts of it are
changed. One example of this type of operation would
be a multiply-accumulate with a set of constants that
change over time, such as with a time-varying finite
impulse response (FIR) filter. A generic example is
shown in Figure 16. The changed memory cells are
shown in a darker shade.

First, the row to be partially programmed must be read
back into the staging area. Then this row is partially

Figure 15: An example of a defragmentation operation. By moving the rows in a top-
down fashion for configurations moving upwards in the array, a configuration will not
overwrite itself during defragmentation.

13

modified (through selectively overwriting the staging
area) to include the new configuration. Finally, the
modified row is written back to the array. This
preserves the configuration information already present
in the row. This is repeated for each altered row in the
configuration.

For each row to be altered in the configuration, there is
one read of the original row data, one or more writes to
change the data in the staging area, and a single write
back to the array from the staging area. This is in
addition to a single write to an offset register for the
configuration offset. The total number of read/write
cycles required to place a partial-row configuration
onto the array is:

<# rows altered> * 2 + <total # changed words> + 1

Cache for R / D FPGA

An additional method to reduce the CPU time required
for configuration operations would be to attach an on-
chip cache to the staging area, such as in Figure 17.
Rows of configuration information could then be held
in the cache. In addition to freeing the CPU from the
operations necessary to send all of the words in each
row of the configuration into the staging area and
reducing the latency of retrieving this data from the
CPU's memory, the actual programming of the array
would be performed much more quickly. This is

Figure 16: Portions of a configuration can be altered at run-time. This example shows
small modifications to a single row of a configuration.

staging area
programming

data

R
ow

 decoder

row
address

SRAM array

DRAM cache

Figure 17: A cache can be attached to the staging area of the R/D FPGA. Entire
configuration rows can be fetched from the cache into the staging area, eliminating the
per-word loading time required to fill the staging area from the CPU.

14

because the entire row would be read from the cache in
a single operation, rather than the multiple word writes
to the staging area from the CPU. Also, the reading of
data from the cache could overlap the writing of the
previous value.

If an entire configuration was held in the cache, the
number of read/write cycles required to place it onto
the array would only be:

<# rows> + 2

Control Unit

Although the control for handling the computation of
row addresses and the signals necessary for
defragmentation has not been discussed in detail, these
functions could be handled by the main CPU or a
dedicated control unit that would be part of the FPGA
itself. Using a separate control unit would free the
CPU from ancillary computations and therefore
potentially increase the speedups provided by the use
of the reconfigurable logic.

Estimated Size Comparison

We modeled the sizes of the basic partially
reconfigurable FPGA and the R/D FPGA using the
same structures used by Li in his study [Li00]. The
sizes are estimated using the sizes of tileable
components.

In order to create the area model for the R/D FPGA, we
modified the hardware of a basic partially
reconfigurable FPGA design. The column decoder of
the partially reconfigurable system was unnecessary in
the R/D version because the staging area is exactly the
width of the memory array, and was therefore removed
for the R/D size model.

There were also several additions to the partially
reconfigurable FPGA design to create the R/D FPGA.
The staging area structure includes the addition of
staging area SRAM, output drivers to allow the CPU to
read the staging area, and the small row decoder for
writing to it. Additionally, the main row decoder for
the array was augmented with two registers, a 2:1
multiplexer for choosing between the registers, and an
adder to sum the offset from one of the registers with
the incoming row address.

We compared the sizes of the two different styles of
FPGA using the base partially reconfigurable FPGA
from [Li00], and the R/D FPGA as a base partially
reconfigurable FPGA with the modifications listed

above. For this size evaluation, we modeled each with
a megabit (220 bits) of configuration data in a square
layout (# rows = # columns). There are 1024 rows,
addressed using 10 bits. For the columns there are 32
32-bit columns, addressed by five bits.

Using the method presented in Li's paper, we consider
that the configuration memory area only comprises
25% of the total FPGA chip area. We used the serial
traditional FPGA design in order to compute the area
of the other 75% of the chip and added this value to our
area totals. The area of the partially reconfigurable
array was calculated to be 8.547 X 109 lambda2, while
the area of the R/D FPGA was calculated to be 8.549 x
109 lambda2, a difference of .0002%. According to this
comparison, the R/D FPGA has only a negligible size
increase over a basic partially reconfigurable FPGA.

The area of the virtualized I/O was not considered for
this area model. The area impact would depend on the
number of input and output lines at each column of the
array.

Conclusions

The use of relocation and defragmentation greatly
reduces the configuration overhead encountered in
reconfigurable computing [Li00]. We have discussed a
method to perform the relocation of configurations on
the 6200 that allows horizontal and vertical flips,
horizontal and vertical offsets, and 90 degree rotations.
These five operations allow us to perform any valid
spatial manipulation of a configuration with a simple
pipelined set of steps, minimizing the work required by
the CPU.

Although a stylized version of the Xilinx 6200 FPGA
can be easily converted to handle relocation and even
defragmentation, the re-introduction of some of the
realities of the architecture poses significant drawbacks
to our modifications. The hierarchical routing structure
places constraints upon our ability to relocate
configurations to new locations. Additionally, because
the 6200 was not explicitly designed for relocation, the
programming information is divided into bytes in a
manner inconvenient to the relocation computations.
Finally, the design is less than ideally suited to
defragmentation. One of our solutions was to read the
configuration off of the array and reload it, which
could be a time-consuming operation. Alternatively,
neighbor-to-neighbor routing for the programming
information could be added to allow configurations to
be shifted on-chip, but would likely cause large area
increases and would disallow complex operations such
as flips or rotation.

15

We then presented a new architecture design based on
the ideas of relocation and defragmentation. This
architecture avoids the position constraints imposed by
the actual 6200 design by ensuring a homogeneous
logic and routing structure. The use of the staging area
buffer together with the offset registers and the row
address adder provide a quick and simple method for
performing relocation and defragmentation of
configurations. The one-dimensional nature causes
both the reconfiguration hardware and the software that
controls it to be simpler than in the 6200 system. This
architecture fully exploits the virtues of relocation and
defragmentation with a minimum of CPU interaction
and only a negligible area increase over a basic
partially reconfigurable FPGA.

References

[Diessel97] O. Diessel, H. ElGindy, “Run-Time
Compaction of FPGA Designs”, ”, Lecture
Notes in Computer Science 1304—Field-
Programmable Logic and Applications. W.
Luk, P. Y. K. Cheung, M. Glesner, Eds.
Berlin, Germany: Springer-Verlag, pp. 131-
140, 1997.

[Goldstein99] S. C. Goldstein, H. Schmit, M. Moe,
M. Budiu, S. Cadambi, R. R. Taylor, R.
Laufer, "PipeRench: A Coprocessor for
Streaming Multimedia Acceleration",
Proceedings of the 26th Annual International
Symposium on Computer Architecture, June
1999.

[Hauck97] S. Hauck, T. W. Fry, M. M. Hosler,
J. P. Kao, "The Chimaera Reconfigurable
Functional Unit", IEEE Symposium on FPGAs
for Custom Computing Machines, pp. 87-96,
1997.

[Hauck98] S. Hauck, "The Roles of FPGAs in
Reprogrammable Systems", Proceedings of
the IEEE, Vol. 86, No. 4, pp. 615-638, April
1998.

[Hauser97] J. R. Hauser, J. Wawrzynek, ``Garp:
A MIPS Processor with a Reconfigurable
Coprocessor,'' IEEE Symposium on FPGAs for
Custom Computing Machines, pp. 12-21,
1997.

[Li 00] Z. Li, K. Compton, S. Hauck,
“Configuration Caching for FPGAs”, in
preparation for IEEE Symposium on Field-

Programmable Custom Computing Machines,
2000.

[Trimberger95] S. Trimberger, "Field Programmable
Gate Array with Built-In Bitstream Data
Expansion", U.S. Patent 5,426,379, issued
June 20, 1995.

[Xilinx96] XC6200: Advance Product
Specification, San Jose, CA: Xilinx, Inc.,
1996.

