
A SIMULATION PLATFORM FOR RECONFIGURABLE COMPUTING RESEARCH

Wenyin Fu, Katherine Compton

Department of Electrical and Computer Engineering
University of Wisconsin at Madison

wenyinf@cae.wisc.edu, kati@engr.wisc.edu

ABSTRACT

In this paper, we present a full-system reconfigurable
computing simulation platform intended to promote inno-
vative new research in reconfigurable computing. Currently,
reconfigurable computing researchers frequently use tools
such as simple trace-based simulators to provide performance
estimates for their designs and methods. However, because
the scope of these simulations is generally high-level and
limited to the reconfigurable hardware and possibly a host
processor, the results presented may unfortunately be less
than completely accurate, particularly with respect to mem-
ory and processor-hardware communication timing. As re-
configurable computing systems become less theoretical and
move closer to widespread realization, more accurate evalu-
ations are necessary to compare new system designs, config-
uration methods, hardware scheduling algorithms, and hard-
ware structures. We therefore discuss the issues involved
in implementing a full-system simulator for reconfigurable
computing, presenting specific implementation techniques,
and demonstrate the value of reconfigurable computing full-
system simulation on an example application.

1. INTRODUCTION

A reconfigurable computing (RC) simulation platform would
provide a flexible environment to examine new ideas and
compare different designs before choosing the best one or
combination to implement, either in an FPGA or in one or
more custom chips. Modular design would allow simulation
of different reconfigurable hardware (RH) designs without
changing the core functionality. The use of a modifiable
simulation platform would permit designers to alter the cou-
pling of the RH with other parts of the system, such as the
processor and memory. A full-system simulator would also
allow a degree of realism not available with simpler esti-
mation tools. Currently, researchers tend to use simulators
and estimation tools that only model user-space code, and
ignore system-level activities. These tools may also lack
realistic memory models, and may model non-mainstream
ISAs such as Alpha or PISA [2]. In these cases, it can be
difficult to contextualize the results in terms of current pro-

cessor technology, and for odd ISAs, compiling new useful
benchmarks may be a difficult and painful process.

In this paper, we present a full-system RC simulator built
on top of the Simics platform [1], using the GEMS memory
system extension [4]. We discuss the issue of simulation vs.
system implementation in section 2. A quick introduction to
Simics and GEMS is given in section 3. Section 4 then dis-
cusses the modifications we have made to Simics/GEMS to
support RC system simulations. We then present the results
of executing an AES application in our simulation environ-
ment in section 5, and demonstrate how a full-system sim-
ulator provides important timing information not available
using less sophisticated estimation tools.

Finally, we present a list of future additions we plan to
make to our simulation environment. Among them is using
one or more real FPGAs to accelerate hardware simulation.
This differs from the approach described previously, as the
FPGAs would not be a direct representation of the simulated
RH, but instead a tool used by the simulation framework to
provide functional accuracy more quickly. This and other
future plans are discussed in more depth in section 6, and
our conclusions given in section 7.

2. WHY SIMULATION?

This simulation platform is not intended to replace the value
of implementing an actual system in hardware. However,
the design of a RC system is a complex process. Depend-
ing on the needs and goals of the designers, the system may
be built from commercial off-the-shelf components, includ-
ing commercially-available FPGAs. In this case, commer-
cial tools provide critical infrastructure. In particular, if the
system uses a complete commercial board, the system is es-
sentially already implemented, and may not require simula-
tion beyond the capabilities of the tools that come with it.
In other cases, a designer may want to create a fundamen-
tally new system or reconfigurable architecture. Although
one can sometimes successfully model a new design on an
existing FPGA platform, the difficulty of the task can in-
crease at least proportionally to the difference between the
new design and the available FPGA platform.

Differing logic designs may be accommodated by mod-
eling the new design in an HDL and synthesizing it to an
FPGA. However, vastly different configuration architectures
(such as modeling a partially reconfigurable FPGA on a serially-
programmed FPGA) or routing architectures (modeling an
FPGA with non-uniform channel widths on one with uni-
form widths) are much more difficult, or at best, much more
space-inefficient to model. The difficulty translates to time-
investment, which may in turn bound the number and range
of different designs or ideas a researcher or a group of re-
searchers can implement and compare to find the best one.
Space-inefficiency may be to such a degree that a significant
financial investment in a large and expensive multi-FPGA
platform is required in order to emulate a design of any ap-
preciable size, limiting those able to perform this type of
investigation, or the scope of investigations. In these cases
a simulator allows new architectures to be tested and evalu-
ated in the context of a full system much more easily.

Furthermore, for designs coupling reconfigurable logic
with one or more microprocessors, there are a limited num-
ber of microprocessor options easily available for commer-
cial FPGA boards and SOPC/Platform FPGAs, restricting
the designer’s choices. Although several different soft-core
processors are offered for use in FPGAs, these tend to have
similar capabilities to one another, and generally fall into the
simple single-threaded embedded processor category, which
may not meet the designer’s needs. Options for interfacing
reconfigurable logic, processor(s), and memory in commer-
cial systems are similarly limited.

A flexible, modifiable simulation framework permits mod-
eling a wider variety of designs with a smaller financial in-
vestment. Virtutech currently provides free licensing of the
Simics full-system simulator—the basis of our RC simu-
lation platform—to individual academic students and fac-
ulty. The system can be modeled at various degrees of de-
tail, allowing an investigator to perform a quick but less-
detailed simulation early in the development of a new idea,
and a more sophisticated implementation as the idea be-
comes more concrete. The simulation platform, because it
is full-system, provides a level of accuracy much closer to a
real system than a simpler estimation tool, but with signifi-
cantly less effort than implementing an actual system.

3. SIMICS/GEMS OVERVIEW

Simics [1] is a full system functional simulator developed
by Virtutech AB [5] that is capable of simulating the range
of hardware in a typical computer system (CPU, memory,
disks, network card, etc). It offers sufficient functional ac-
curacy to run unmodified binaries on the the simulated ma-
chine, including operating systems. However, Simics by
itself is only a functional simulator, and does not provide
cycle-accurate timing. Fortunately, Simics provides a rich

drive

model
processor

Opalcheck

drive

Ruby memory system model

Simics

Fig. 1. Simics/GEMS overview.

set of APIs to allows users to extend Simics and provide this
support through customized modules.

The Wisconsin Multifacet General Execution-driven Mul-
tiprocessor Simulator (GEMS) is a collection of Simics mod-
ules that provide timing simulation capability for a SPARC
processor and a multiprocessor memory system [4]. The
processor timing model (Opal) models a dynamically sched-
uled SPARC V9[3] processor. The memory system mod-
ule (Ruby) models caches, cache controllers, interconnect,
memory controllers and banks of main memory in a multi-
processor memory system. Ruby can be driven by Opal to
provide memory access timing information while Opal itself
simulates the timing of the processor as shown in Figure 1.
In our work, we extended Opal/Simics to simulate a proces-
sor augmented with RH.

4. ADDING RC SUPPORT

We have modified Simics/GEMS to support RC. However,
before discussing simulator details, we first define our view
of RC. In this type of system, applications are composed
of both hardware and software components. The hardware
components are swapped in and out of RH as needed, and
a host microprocessor executes the software portion of the
application. We refer to the hardware-mapped compute-
intensive parts of RC applications as application kernels. In
a multi-tasking or multi-threaded system the need for hard-
ware resources may exceed the availability. Binding kernels
dynamically at runtime to hardware or software allows ker-
nels that do not fit in hardware to proceed in software to
avoid stalling [8], [9], [10], [7].

Based on our view of RC, we have several goals for our
simulation platform. One is to support the dynamic binding
of kernels to hardware or software as discussed above. An-
other is to provide a realistic implementation of RC, model-
ing it in a way that it could actually work in real hardware.
We also need to provide cycle-accurate processor and mem-
ory timing information, which is facilitated by the use of

......
bkernel kid, L_RC_end; // branch on kernel
RC_func(); // kernel’s SW code

L_RC_end:
......

Fig. 2. Original concept of kernel invocation [7]

Simics and GEMS. The simulation should be functionally
correct, and ideally, the software binaries run in the simu-
lator should be identical to the software binaries that would
run on an actual implementation of the simulated system.
The following sub-sections discuss implementation issues
as they relate to meeting our simulator design goals.

4.1. Special RC Instructions

In our original work on dynamic scheduling techniques for
reconfigurable computing [7], we proposed a special branch-
on-kernel instruction (bkernel) to invoke the kernel exe-
cution as shown in Fig. 2. When the requested kernel, in-
dicated by the kernel id (kid), is not available in RH, this
branch will fall through to execute the conventional software
binary. Otherwise, the bkernel instruction will trigger the
kernel computation in hardware. The mapping between the
kid and the actual hardware configuration information can
be established either at application installation or applica-
tion execution time. Since different applications may have
been compiled to use the same kid values, the processor
can augment the kid with the process id to avoid ambiguity
issues. The second operand, L RC end, is the return ad-
dress for after a hardware kernel execution, used to skip the
alternative software implementation code.

Due to common hardware design techniques such as pipelin-
ing, a single call to a kernel’s hardware implementation may
be the equivalent of several executions of that kernel’s soft-
ware equivalent. In these cases, the application designer (or
preferably the compiler) would simply unroll that number
of software iterations in the section of the binary for the ker-
nel’s software code in order to maintain equivalency. Ac-
commodating more complex differences between the soft-
ware and hardware kernel implementation interfaces will be
part of future work.

Although this method was appropriate for our previous
small scale trace-based simulator, we have refined and modi-
fied the RC invocation to integrate it into our new Simics/GEMS-
based RC simulation platform. To add RC-related instruc-
tions to the SPARC ISA, we overload an existing instruc-
tion currently interpreted as a NOP. This opcode is actually
the seti imm, %g0 instruction, but in the SPARC archi-
tecture register %g0 is hardwired to zero, and any attempt
to write to it is treated as a NOP. This instruction provides
22 bits for encoding the immediate operand, allowing us to
overload it to create a number of different special instruc-

......
RCK.nop Rs, kid; // Rs<-1 if kid on HW
bz Rs, L_RC_sw_kid; // 0->SW, 1->HW
RC_HW_func.nop; // launch kernel HW
ba L_RC_end;

L_RC_sw_kid:
RC_func(); // kernel’s SW code

L_RC_end:
......

Fig. 3. Kernel invocation split into two separate instructions

tions with space left for data used in those instructions.
To minimize instruction set modification, we implement

the special branch using a sequence of two instructions as
shown in Fig. 3. The first instruction is a special register set
instruction (RCK.nop), that sets register Rs to 1 if a hard-
ware implementation for the requested kernel is currently
available on the RH, and 0 otherwise. Then, an existing
branch-on-zero (bz) instruction can be used to branch to the
software equivalent if the hardware version is not currently
loaded and ready on the RH. After the hardware kernel exe-
cution completes, we branch to the end of the software im-
plementation, rejoining the normal program flow.

This two-instruction sequence has two advantages. First,
adding a new special “set register” instruction to the Sim-
ics/GEMS environments is significantly simpler than adding
a new branch instruction. Second, if the application code
ensures that Rs is set to zero at the beginning and is not
modified apart from the NOP, modified application bina-
ries will run correctly on existing (unmodified) SPARC ma-
chines. The simulator, on the other hand, captures the spe-
cial RCK.nop when encountered, and uses Simics APIs to
directly manipulate the Rs register. If the kernel is currently
loaded on the simulated system’s hardware, the simulator
sets Rs to 1, and the program flow will fall through to the
hardware support code at the following bz instruction. In
the hardware branch, we add another special instruction:
RC HW func, which is intended to actually trigger hard-
ware kernel execution in a real RC system, and is therefore
captured by our simulator for this purpose. For functional
correctness, the kernel must somehow be actually computed
at this point, as discussed in the next section.

4.2. Simulation Accuracy

Although binary compatibility and software execution is-
sues are relatively easy to solve, augmenting Simics/GEMS
to accurately simulate RC hardware execution is more dif-
ficult. In particular, we need to consider simulation speed,
functional accuracy, and timing accuracy. Actual Verilog
simulation of the hardware components is more complex
than we currently support (or need) in the simulator, but
is a possibility for future versions of the simulation envi-
ronment. This approach would aid in functional and tim-

RCK.nop Rs, kid; // Rs<-1 if kid on HW
bz Rs, L_RC_sw_kid; // 0->SW, 1->HW
RC_HW_func.nop; // launch kernel HW
RC_func(); // functionally correct
ba L_RC_end;

L_RC_sw_kid:
RC_func(); // kernel’s SW code

L_RC_end:

Fig. 4. The simulated CPU can execute kernel software for
functional correctness, but this does not preserve application
binary compatibility between real and simulated systems.

ing accuracy, but could negatively impact simulation speed.
Another possibility could be to use actual RH as an integral
part of the simulation platform, which would provide simi-
lar benefits to Verilog simulation, but without as negative an
impact on simulation time. This option is discussed in more
depth later in Future Work. Yet another approach would be
to simply account for the time spent in hardware and not
worry about actually simulating the functionality of the ker-
nel, which would allow fast simulation, and timing accuracy
(provided hardware timing is constant for all possible input
data), but would not be functionally accurate.

At first, we considered ensuring functional accuracy by
simply requiring the processor to always take the software
branch, or to duplicate the kernel software routine inside the
hardware part of the branch as shown in Fig. 4. The self-
ish benefit of this approach is that it would be the easiest
to implement, as it requires no extra modification to Sim-
ics/GEMS. Simulation speed is the equivalent of simulating
the software, though one might intuitively object to simulat-
ing the hardware operation on a simulated processor.

A significant problem of this approach is the difficulty
of achieving timing accuracy. Presumably, the timing of
the software version of a kernel will be greater than the
hardware version, or it would not have been converted to
hardware. We considered “freezing” simulation time while
the simulated CPU executed the kernel software, then ad-
vancing simulation time based on the kernel’s hardware ex-
ecution time. Unfortunately, this is a complex issue in a
full-system simulator capable of simulating multi-processor
systems, as the CPUs may become “out of phase” with re-
spect to each other and the rest of the system. Also, the
machine state could change at different times in a simulated
vs. real system. For example, exceptions or interrupts could
occur while the simulated CPU was executing the kernel’s
software equivalent, which could change the program flow.
Also, until runtime, we don’t know exactly what the mem-
ory or cache state is, and therefore, what our memory laten-
cies will be. If we execute the software version of the kernel
without advancing simulation time, we could not accurately
model memory access times (particularly in shared-memory
multiprocessor environments). We could instead use the

opposite approach of advancing simulation time while ex-
ecuting the software equivalent, then subtracting simulation
time according to the difference in hardware and software
execution times, but this would still be inaccurate if mem-
ory accesses were performed after the hardware would have
completed, we would still have synchronization issues, and
roll-back of simulation time (but not system state) is not
supported in the Simics API. Another important drawback
of using the simulated CPU to model hardware execution
is that application binaries used in simulation would differ
from those used on real RC systems. A real RC system
would use actual hardware to implement hardware kernels,
not a software-based simulation.

Therefore, we chose instead to use the simulator itself to
natively execute software equivalents of the kernels. A soft-
ware equivalent of each kernel is registered, along with its
kernel ID, in advance with the simulator. The simulator then
executes a pre-compiled version of the software equivalent
to generate the actual kernel outputs when RC HW func is
called. For situations where a software-only version is not
appropriate (too slow, too much power) for an actual deploy-
ment of the simulated system, the simulator can be forced to
always choose the hardware branch. Currently, this requires
stalling until the configuration is loaded, but an upcoming
version will allow the stalled thread to sleep and one or more
other threads to execute in the meantime. However, a soft-
ware equivalent must still be registered with the simulator
for functional correctness, even if it is not part of the actual
application software binary.

This approach also allows us to achieve timing accuracy,
as we can advance simulation time based on the kernel’s
hardware execution time, as determined by synthesis for the
target reconfigurable architecture. The simulator models the
configuration time of the RH as either a constant value (serially-
programmed single-context or serially-programmed multi-
context design) or as a user-defined function of the size of
the kernel configuration (partially-reconfigurable design). We
will discuss the issue of how we preserve memory timing ac-
curacy in section 4.3. Simulation time is actually improved
compared to the previous method, since the simulator exe-
cutes a pre-compiled version of the kernel native to the ma-
chine running the simulation. Finally, we also can use the
same binary in the simulator as an actual RC system, with
the same code as in Fig. 3.

The simulator must also update the simulated machine’s
state based on the executed kernel, just as it would be in
a physical RC system. Because we are aiming for inter-
changeable hardware and software versions for application
kernels, the memory values should be updated the same way
whether the hardware or software version were used. The
software code has instructions to update memory locations.
For the hardware version, we need to match these memory
updates. Initially one might think that the simulator could

simply write these values to the appropriate memory and
register locations using the standard Simics API (which al-
lows users to directly access and modify physical memory
locations). However, applications use virtual memory ad-
dresses, which could be mapped to different physical loca-
tions each time the applications are run. This problem is ex-
acerbated by the fact that the kernel RC HW func call may
need to operate on a very large memory space (such as for
multimedia applications). In this case, some or all of the
virtual memory locations may not yet be loaded into phys-
ical memory when the kernel is called, preventing a direct
virtual→physical address translation.

However, a memory residence guarantee can be pro-
vided at the application level by modifying the application
source. For example, applications can touch the required
pages in advance, or lock a page in memory through system
calls. Unfortunately, these techniques by themselves are in-
sufficient given that we are performing a full system simu-
lation of a multi-tasking environment. Pre-touching a mem-
ory page is not an actual guarantee if a processor context
switch occurs between the pre-touch and the subsequent call
to RC HW func. Locking a page in memory is possible pro-
vided the lock can occur atomically with the pre-touch, but
repeated system calls like this can adversely affect system
performance. The solution we have implemented is tied di-
rectly to the current processor/RC/memory interface model
implemented in our simulator, and is therefore discussed in
the next section. Other possible solutions are discussed in
the Future Work section.

4.3. Modeling the CPU/RH/Memory Interface

In order to provide a standard interface between hardware
kernels in the RH and the rest of the system, we currently
use a local buffer within each kernel to hold the input and
output data. Before the RC HW func call, the input data to
the hardware must be loaded from the CPU’s memory hier-
archy into the kernel’s local buffer (the “pre-load” phase).
After the call, the output results can be read from the buffer
to store into the CPU’s memory hierarchy (the “post-store”
phase). Another ISA extension would allow applications to
directly read from and write to kernel buffers. The CPU
is therefore responsible for all memory accesses, simplify-
ing the problem of virtual addressing. The special loads and
stores must be added to the application code within the hard-
ware part of the kernel branch, as shown in Fig. 5. The use
of the local buffer also simplifies the interface from a hard-
ware designer’s perspective, as they do not need to use a
specialized interface, or have to worry about variable mem-
ory latency. Memory timing and bandwidth limitations are
implicitly addressed by Simics and GEMS for these CPU-
initiated memory accesses. Advanced memory interfaces
discussed in the Future Work section that do not use the CPU
as an intermediary will have to interface more explicitly with

RCK.nop Rs, kid; // Rs<-1 if kid on HW
bz Rs, L_RC_sw_kid; // 0->SW, 1->HW
ld; // input pre-loads
......
RC_HW_func.nop; // launch kernel HW
st; // output post-stores
......
ba L_RC_end;

L_RC_sw_kernel:
RC_func(); // kernel’s SW code

L_RC_end:

Fig. 5. Complete kernel invocation, including pre- and post-
HW execution memory operations

GEMS to maintain accuracy.
This approach has a number of downsides. First, the

CPU is acting as a memory controller when it could either
be performing other tasks to increase system performance,
or enter a sleep state to conserve power. Second, a local
buffer essentially duplicates storage requirements for kernel
inputs and outputs. Third, currently the kernel cannot be-
gin execution until the complete input data is ready. The
interface between RH and system memory is still a topic of
open research, and in the Future Work section we discuss
our future plans for improving kernel memory interfacing.
For now, we use the described local buffer method.

Despite its drawbacks, the pre-load and post-store oper-
ations do provide the opportunity to address the memory’s
functional correctness problem described earlier in section
4.2. The reason a direct memory manipulation is not always
possible is that the target virtual memory location might
not yet be located in physical memory. However, the pre-
load/post-store instructions ensure that the entire input/output
space is accessed, guaranteeing that these memory locations
reside in physical memory at least once in close temporal
proximity to the related hardware kernel call. The pre-load
phase models loading the input values into a kernel’s local
data buffer, while the post-store phase models loading the
kernel outputs from the buffer into the CPU’s memory. The
CPU performs the required virtual→physical memory trans-
lations, and loads required memory pages.

The remaining problem is to actually put the correct ker-
nel output values into the required memory locations. Re-
member that when choosing the hardware implementation
of a kernel, for functional accuracy the kernel’s software
equivalent is executed within the simulator itself, not on the
simulated platform. Therefore, the results of that execution
are in the memory of the computer running the simulation,
not the simulated system itself. Since the post-stores are ex-
ecuted on the simulated platform, but the actual results are
not known within that scope, the application binary writes
dummy values to all output memory locations. Inside the
simulator, the Simics API allows us to intercept these store
operations as they complete execution. Although the sim-

Table 1. Machine Configuration.
Processor 2GHz, 4-way OOO, 14 stages
ROB size 128 entries
L1 cache split I-D, each 4-way 32K, 1 cycle latency
L2 cache unified, 4-way 1M, 18 cycle latency
Memory 256M, 160 cycle latency

RH Xilinx Virtex-4

ulator knows the virtual memory addresses for the result
data, it is not aware of the corresponding physical address
until the simulated CPU performs address translation dur-
ing the dummy store. The CPU loads the memory page
if required and performs address translation, generating the
correct physical addresses for the result data. The simula-
tor then replaces the dummy values at the stored locations
with the actual values it had computed. This ensures that the
correct results will be stored at the correct addresses with
correct memory timing.

5. SIMULATION RESULTS

In this section, we demonstrate the use of our full system
simulation platform to investigate a particular problem in
RC research—performance results that can depend on the
simulation approach. We model a RC system as previously
described, including the local buffer to store kernel inputs
and outputs. We compare performance numbers of three dif-
ferent possible ways to simulate this type of system:

1. Ignore the local buffer memory copy overhead, and
only consider the RC HW execution time

2. Charge a fixed number of cycles for local buffer copy
operations, which assumes an L1 cache hit on all data
accesses

3. Fully simulate the memory overhead (which may in-
clude cache misses) using our pre-load/post-store aug-
mented binary

The simulated machine has a 2GHz 4-way out-of-order
SPARC-9 processor with 256MB memory and 8GB SCSI
disk running Solaris 9, augmented with RH based on a Xil-
inx Virtex-4. Configuration details are shown in Table 1.

We implemented a 128-bit AES encryption application
as a benchmark for this comparison. This particular applica-
tion spends most of its time in a single routineaes encrypt
that encrypts one 16-byte block per function call. We imple-
mented a hardware version of this kernel in a Xilinx Virtex
4 FPGA to obtain timing information. Since this is the only
kernel implemented, we assume for all cases that the ker-
nel fits in hardware, and is pre-loaded. We also assume that

Table 2. Simulated Performance Results
Kernel Inst Count Kernel Cycle Count

SW 56,950,784 26,879,489
HW Case 1 294,912 6,643,382
HW Case 2 294,912 9,005,565
HW Case 3 2,752,512 16,187,770

since we are only using one key, that the subkeys are pre-
computed. The hardware implementation is pipelined and
encrypts two blocks for every hardware call. The subkeys
are initially loaded in 11 cycles, and it takes 22 hardware
cycles to execute the kernel with a cycle time of 4.35ns, for
a total latency of 96ns per two blocks encrypted. This trans-
lates to 192 CPU cycles, at a 2GHz CPU clock rate. We
assume a 64-bit bus width for the data connection between
the CPU and RC HW, an easily achievable configuration.
The buffer copy therefore requires 4 hardware cycles to get
the input, and another 4 for writing the output.

If we assume memory accesses are free, we do not add
any overhead to the kernel timing. If we assume that all
data accesses can be served in L1 cache, this will add 35ns
memory latency overhead to the RC kernel execution. We
simulated a short run of this AES benchmark with an input
file of 1MB size, which requires approximately 30 million
instructions. Table 2 shows the number of cycles spent in the
aes encrypt kernel for a software-only implementation,
and the three different simulation techniques. As we can see,
ignoring the local buffer copy overhead significantly under-
estimates the actual cycle count. While adding a fixed num-
ber of cycles to account for the buffer copy process (assum-
ing that all data will be in L1 data cache when needed) im-
proves timing estimate accuracy, the results still differ sig-
nificantly from the full-system simulation results with the
pre-load and post-store operations. This data indicates that
semi-reasonable yet at least partially inaccurate assumptions
and estimates used in evaluating a RC application or system
may adversely affect the validity of the evaluation results. In
the case of the extremely simple model, this lead to a 2.5x
error in performance results.

6. FUTURE WORK

This simulation platform is still relatively new, and we have
several plans for extending it and improving it. A natural
next step will be to incorporate our previous work on RH
scheduling [7] into the operating system we use in the sim-
ulation platform, using multi-processor support in Ruby [4]
to model a CMP system augmented with RH.

In future simulator versions, users will be able to choose
between several different memory interfaces (and correspond-
ing processor interfaces), or even add their own with the help

of the simulator’s code base. The simulator will be able to
model a variety of RC platforms, from a processor with a
reconfigurable functional unit, to a system with a separate
reconfigurable co-processor, simply by selecting the appro-
priate interfaces, and adjusting the parameters controlling
simulated communication delays.

Currently, the simulator is limited to a primitive buffer-
based interface between the processor and RH, and the main
processor is the RH’s memory controller. One of our next
steps is to add a dedicated RH memory controller, allow-
ing the CPU to attend to other tasks while the RH receives
and stores information and performs its computation. Fur-
thermore, we will implement a streaming memory model to
allow computation to begin before all input data has been
loaded into the buffer. We will add a special “stall” input
to the kernel interface to allow the memory controller (or
the buffer) to stall kernel hardware when the input data is
not ready. However, more complex memory interfaces rein-
troduce issues that previously could be ignored, such as the
fact that hardware implementations may access memory in a
different order and at a different rate than software. In these
cases, memory access pattern information must be provided
to the simulator to ensure accuracy.

Another possible extension is to accelerate the simula-
tion platform itself using an FPGA board. This board would
not be used as a representation of the simulated RH, because
of the difficulties discussed in section 2. Instead, the hard-
ware would fill the same role as the simulator itself when
executing the pre-compiled binary of the application kernel
— a tool to provide functional correctness. Within the sim-
ulation, there would be no difference between our current
technique and using the FPGA-augmented simulation plat-
form (apart from simulation speed). Timing would still be
based on user parameters, determined from the structure of
the RH modeled in the simulator. The simulator will manage
the real FPGA resources as it farms out native kernel imple-
mentations to it for execution, but will also maintain a view
of the simulated RH resources. The simulated design may be
a completely different design, with a different configuration
and communication architecture, and with different kernels
residing in simulated hardware than actual hardware. Essen-
tially, the simulator would act as a virtual machine layer on
top of the real FPGA resources.

7. CONCLUSION

A full-system reconfigurable computing simulation infras-
tructure offers researchers a powerful tool to investigate new
reconfigurable hardware designs, RH/processor/memory in-
terfaces, and systems software techniques. Our simulator
provides a realistic environment for RC evaluation, able to
evaluate performance at a level of detail and accuracy not
previously possible using simple user-space code simula-

tors. A simple comparison of common memory interface
assumptions showed that the simplest (and least accurate)
assumption resulted in performance estimate errors of ap-
proximately 2.5x, while the slightly more accurate (but still
not a full-system simulation) approach was an improvement,
but still off by 1.8x. A simulation platform also allows for
a wider variety of designs to be evaluated than if researches
had to take the time to implement each possible one in a
real hardware system to obtain realistic performance evalu-
ations. A full-system RC simulator therefore both facilitates
research in existing and emerging areas of RC, and improves
the accuracy of that research.

8. ACKNOWLEDGEMENTS

This work was supported in part by a grant from the Wis-
consin Alumni Research Fund.

9. REFERENCES

[1] Peter S. Magnusson et al, “Simics: A Full System Simulation
Platform”, IEEE Computer, 35(2):50-58, February 2002.

[2] D. Burger, and T. M. Austin, “SimpleScalar Tutorial”, pre-
sented at 30th International Symposium on Microarchitecture,
December, 1997.

[3] “The SPARC Architecture Manual. Version 9”, SPARC Inter-
national, Inc. San Jose.

[4] Milo M.K. Martin, Daniel J. Sorin, Bradford M. Beckmann,
Michael R. Marty, Min Xu, Alaa R. Alameldeen, Kevin E.
Moore, Mark D. Hill, and David A. Wood, “Multifacet’s
General Execution-driven Multiprocessor Simulator (GEMS)
Toolset”, Computer Architecture News (CAN), September
2005.

[5] http://www.virtutech.com

[6] Carl J. Mauer, Mark D. Hill, and David A. Wood, “Full System
Timing-First Simulation”, Proceedings of the 2002 ACM Sig-
metrics Confernece on Measurement and Modeling of Com-
puter Systems, June 2002.

[7] Wenyin Fu, Katherine Compton, ”An Execution Environment
for Reconfigurable Computing”, IEEE Symposium on Field-
Programmable Custom Computing Machines, April 2005.

[8] H. Quinn, L. S. King, M. Leeser, W. Meleis, “Runtime Assign-
ment of Reconfigurable Hardware Components for Image Pro-
cessing Pipelines”, IEEE Symposium on Field-Programmable
Custom Computing Machines, 2003.

[9] V. Nollet, P. Coene, D. Verkest, S. Vernalde, R. Lauwereins,
“Designing an Operating System for a Heterogeneous Recon-
figurable SoC”, Reconfigurable Architecture Workshop, 2003.

[10] R. Lysecky, F. Valid, “A configurable logic architecture for
dynamic hardware/software partitioning”, Design, Automa-
tion, and Test in Europe Conference and Exhibition, pp. 480-
485, 2004.

