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Abstract

Although run-time reconfigurable systems have been shown to achieve very high performance, the
speedups over traditional microprocessor systems are limited by the cost of hardware configuration.  In this
paper, we explore the idea of configuration caching.  We present techniques to carefully manage the
configurations present on the reconfigurable hardware throughout program execution.  Through the use of
the presented strategies, we show that the number of required reconfigurations is reduced, lowering the
configuration overhead. We extend these techniques to a number of different FPGA programming models,
and develop both lower bound and realistic caching algorithms for these structures.

Introduction

In recent years, reconfigurable computing systems such as Garp [Hauser97], OneChip [Wittig96] and Chimera
[Hauck97] have attracted a lot of attention because of their promise to deliver the high performance provided by
reconfigurable hardware along with the flexibility of general purpose processors.  In such systems, portions of an
application with repetitive logic and arithmetic computation are mapped to the reconfigurable hardware, while the
general-purpose processor handles other portions of computation.

For many applications, the systems need to be reconfigured frequently during run-time to exploit the full potential of
using the reconfigurable hardware.  Reconfiguration overhead is therefore a major concern because the CPU must sit
idle during this process.  By reducing the overall reconfiguration overhead, the performance of the system is
improved.  Therefore, many studies have involved examining techniques to reduce the configuration overhead.
Some of these techniques include configuration prefetching [Hauck98a] and configuration compression [Hauck98b,
Li99].  In this paper, we present another approach called configuration caching that reduces the reconfiguration
overhead by buffering configurations on the FPGA.

Caching configurations on an FPGA, which is similar to caching instructions or data in a general memory, is to
retain the configurations on the chip so the amount of the data that needs to be transferred to the chip can be
reduced.  In a general-purpose computational system, caching is an important approach to hide memory latency by
taking advantage of two types of locality—spatial locality and temporal locality.  Spatial locality states that items
whose addresses are near one another tend to be referenced close together in time.  Temporal locality addresses the
tendency of recently accessed items to be accessed again in the near future.  These two localities also apply to the
caching of configurations on the FPGA in coupled processor-FPGA systems.  However, the traditional caching
approaches for general-purpose computational systems are unsuitable for the configuration caching for the following
reasons:

1) In general-purpose systems, the data loading latency is fixed because the block represents the atomic data
transfer unit, while in the coupled processor-FPGA systems, the latency of configurations may vary.  This
variable latency factor could have a great impact on the effectiveness of caching approaches.  In traditional
memory caching, the data items frequently accessed are kept in the cache in order to minimize the memory
latency.  However, this might not be true in coupled processor-FPGA systems because of the non-uniform
configuration latency.  For example, suppose that we have two configurations with configuration latencies 10ms
and 1000ms respectively.  Even though the first configuration is executed 10 times as often as the second one,
the second configuration is likely to be cached in order to minimize the total configuration overhead.

2) Since the ratio of the average size of configurations to chip area is much smaller than the ratio of the block size
to the cache size, only a small number of configurations can be retained on the chip.  This makes the system
more likely suffer the “thrashing problem”, in which the configurations are swapped between the configuration
memory and the FPGA very frequently.
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The challenge in configuration caching is to determine which configurations should remain on the chip and which
should be replaced when a reconfiguration occurs.  An incorrect decision will fail to reduce the reconfiguration
overhead and lead to a much higher reconfiguration overhead than a correct decision.  The non-uniform
configuration latency and the small number of configurations that reside simultaneously on the chip increase the
complexity of this decision. Both frequency and latency factors of configurations need to be considered to assure the
best reconfiguration overhead reduction.  Specifically, in certain situations retaining configurations with high
latency is better than keeping frequently required configurations that have lower latency.  In other situations,
keeping configurations with high latency and ignoring the frequency factor will result switching between other
frequently required configurations because they cannot fit in the remaining area.  The switching causes
reconfiguration overhead in this case that will not occur if the configurations with high latency but low frequency
are unloaded.

In addition, the different features of different FPGA programming models such as the Single Context, the Multi-
Context, and the Partial Run-Time Reconfigurable models (discussed in depth later) add complexity to configuration
caching.  Specific properties of each FPGA model require unique caching algorithms.  Furthermore, because of the
different architectures and control structures, the computational capacities of the different models varies for a fixed
area.  In this paper, we will present the capacity analysis for three prevalent FPGA models and two new FPGA
models.  For each model, we implement realistic caching algorithms that use either run-time information or profile
information of the applications.  Furthermore, we develop lower bound algorithms or near lower bound algorithms
that apply omniscient execution information of the applications.

FPGA Models

The three FPGA models mentioned previously, the Single Context FPGA, the Partial Run-Time Reconfigurable
FPGA, and the Multi-Context FPGA, are the three dominant models for current run-time reconfigurable systems.
For a Single Context FPGA, the whole chip area must be reconfigured during each reconfiguration.  Even if only a
small portion of the chip needs to reconfigured, the whole chip is rewritten during the reconfiguration.
Configuration caching for the Single Context model allocates multiple configurations that are likely to be accessed
near in time into a single context to minimize switching of contexts.  By caching configurations in this way, the
reconfiguration latency is amortized over the configurations in a context.  Since the reconfiguration latency for a
Single Context FPGA is fixed (based on the total amount of configuration memory), minimizing the number of
times the chip is reconfigured will minimize the reconfiguration overhead.

For the Partial Run-Time Reconfigurable (PRTR) FPGA, the area that is reconfigured is just the portion required by
the new configuration, while the rest of the chip remains intact.  Unlike the configuration caching for the Single
Context FPGA, where multiple configurations are loaded to amortize the fixed reconfiguration latency, the
configuration caching method for the PRTR is to load and retain configurations that are required rather than to
reconfigure the whole chip.  The overall reconfiguration overhead is the summation of the reconfiguration latency of
the individual reconfigurations.  Compared to the Single Context FPGA, the Partial RTR FPGA provides more
flexibility for performing reconfiguration.
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Figure 1: The structure of a 4-context FPGA [Trimberger97].

The configuration mechanism of the Multi-Context model [Trimberger97] is similar to that of the Single Context
FPGA.  However, instead of having one configuration stored in the FPGA, multiple complete configurations are
stored.  Each complete configuration can be viewed as multiple configuration memory planes contained within the
FPGA.  The structure of a 4-context FPGA is illustrated in Figure 1.  For the Multi-Context FPGA, the configuration
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can be loaded into any of the contexts.  When needed, the context containing the required configuration will be
switched to control the logic and interconnect plane.  Even though the latency of a single switch of is negligible, the
frequency of the switching will lead to a significant overhead.  Therefore, the reconfiguration latency for the Multi-
Context FPGA includes not only the configuration loading latency, but also the configuration switching latency.
Because every SRAM context can be viewed as a Single Context FPGA and the method for allocating
configurations onto contexts for the Single Context FPGA can be applied.

We will present two new models based on the Partial Run-Time Reconfigurable (PRTR) FPGA.  The current PRTR
systems are likely to suffer a “thrashing problem” if two or more frequently used configurations occupy overlapping
locations in the array.  Simply increasing the size of the chip will not alleviate this problem.  Instead, we present a
new model, the Relocation model, which dynamically allocates the position of a configuration on the FPGA at run
time instead of at compilation time.  Another model, called the Relocation + Defragmentation model [Compton00],
further improves the hardware utilization.  In current PRTR systems, during reconfiguration portions of chip area
could be wasted because they are too small to hold another configuration.  These small portions are called fragments
similar to the fragments in traditional memory systems, and they could represent significant percentage of chip area.
In the Relocation + Defragmentation model, a special hardware unit called the Defragmentor can move
configurations within the chip such that the small unused portions are collected as a single large fragment.  This
allows more configurations to be retained on the chip, increasing the hardware utilization and thus reducing the
reconfiguration overhead.  For example, Figure 2 shows three configurations currently on the chip with two small
fragments.  Without defragmentation, one of the three configurations has to be replaced when configuration 4 is
needed.  However, as shown in right side of the Figure 2, by pushing the configuration 2 and 3 upward the
defragmentor produces one single fragment that is large enough to hold configuration 4. Notice that the previous
three configurations are still present, and therefore the reconfiguration overhead caused by reloading a replaced
configuration can be avoided.
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Figure 2: An example illustrating the effect of defragmentation.  The two small fragments are located
between configurations, and neither of them is large enough to hold configuration 4 (a).  After
defragmentation, configuration 4 can be loaded without replacing any of the three other configurations (b).

Experimental Setup

In order to investigate the performance of configuration caching for the five different models presented in the last
section, we develop a set of caching algorithms for each model.  A fixed amount of hardware resources (in the form
of overall area) is allocated to each model.  To conduct the evaluation, we must perform three steps.  First, for each
model, the capacity equation must be derived such that the number of programming bits can be calculated for a
given architecture model and a given area.  Second, we test the performance of the algorithms for each model by
generating a sequence of configuration accesses from a profile of execution information from each benchmark.
Third, for each model, caching algorithms are executed on the configuration access sequence, and the configuration
overhead for each algorithm is measured.
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Capacity analysis

We created layouts for the programming structures of the different FPGA types: the Single Context, the Partial Run-
Time Reconfigurable, the Multi-Context, the PRTR with Relocation, and the PRTR with Relocation and
Defragmentation.  These area models are based on the layout of tileable structures that composed the larger portions
of the necessary architecture.  This layout was performed using the Magic tool, and sizes (in lambda2) were obtained
for the tiles.

The Single-Context FPGA model is composed of a two-phase shift chain of programming bits, which forms the path
for the input of configuration data.  The PRTR FPGA, however, requires more complex hardware.  The
programming bits are held in 5-transistor SRAM cells, which form a memory array similar to traditional RAM
structures.  Row decoders and column decoders are necessary to selectively write to the SRAM cells.  Large output
tristate drivers are also required near the column decoder to magnify the weak signals provided by the SRAM cells
when reading the configuration data off of the array.  The Multi-Context FPGA is based on the information found in
[Trimberger97].  We use a four-context design in our representation of a Multi-Context device, where each context
is similar to a single plane of a PRTR FPGA.  A few extra transistors and a latch per active programming bit are
required to select between the four contexts for programming and execution.  Additionally, a context decoder must
be added to determine which of those transistors should be enabled.

The two variants on the PRTR FPGA, the Relocation FPGA and the Relocation + Defragmentation FPGA, require a
short discussion on their basic operation.  Both of these designs are one-dimensional row-based models, similar to
Chimaera [Hauck97] and PipeRench [Goldstein99].  In this type of FPGA, a full row of computational structures is
the atomic unit used when creating a configuration: configurations may use one or more rows, but any row used by
one configuration becomes unavailable to other configurations.  While a two-dimensional model could improve the
configuration density, the extra hardware required and the complexities of two-dimensional placement limits the
benefits gained through the use of the model.  One-dimensionality simplifies the creation of relocation and
defragmentation hardware, however, because these problems become one-dimensional issues similar to memory
allocation and defragmentation.

The PRTR design forms the basis of the PRTR with Relocation FPGA.  A small adder and a small register both
equal in width to the number of address bits for the row address of the memory array were added for the new design.
This allows all configurations to be generated such that the "uppermost" address is 0.  Relocating the configuration
is therefore as simple as loading an offset into the offset register, and adding this offset to the addresses supplied
when loading a configuration.

Finally, the PRTR with Relocation and Defragmentation [Compton00] is similar to the PRTR with Relocation, with
the addition of a row-sized set of SRAM cells that form a buffer between the input of the programming information
and the memory array itself.  A full row of programming information can be read back into this buffer from the
array, and then written back to the array in a different position as dictated by the offset register.  In order to make
this operation efficient, an additional offset register and a 2:1 multiplexer to choose between the offset registers are
added.  This provides one offset for the reading of configuration data from the array, and a separate one for writing
the information back to a new location.  This buffer requires its own row decoder, since it is composed of several
data words.  A column decoder between the incoming configuration data and the buffer is not needed, as we design
the structure to have multiple rows, but a single column.  However, the column decoders connected to the main
array (as appear in the basic PRTR design) are no longer necessary, as the information written from the buffer to the
array is the full width of the array.  This structure is similar to an architecture proposed by Xilinx [Trimberger95].

In order to account for the size of the logic and interconnect in these FPGAs, we use the assumption that the
programming layer of an FPGA uses approximately 25% of the area of the chip.  Because most current FPGAs are
of the Single Context variety, we base the other 75% of the area on this style of model, using the equation:

0.25 × TOTAL_SIZE = MEM_SINGLE_CONTEXT => 0.75 × TOTAL_SIZE = 3 × MEM_SINGLE_CONTEXT,

where 0.75 × TOTAL_SIZE is the amount to add to the sizes computed using our area models in order to obtain full
chip sizes for those models.  See Appendix I for calculation details.

As mentioned before, all models are given the same total area.  However, due to the differences in the hardware
structures, the number of programming bits varies among our models.  For example, according to Appendix I, a
Multi-Context model with 1 Megabit of active configuration information and 3 Megabits of inactive information has
same area as a PRTR with 2.4 Megabits of configuration information.
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Configuration Sequence Generation and Size Definition

We use two sets of benchmarks to evaluate caching algorithms for FPGA models.  One set of the benchmarks was
compiled and applied on the Garp architecture [Hauser97], where the compute-intensive loops of C programs are
extracted automatically for acceleration on a tightly-coupled dynamically reconfigurable coprocessor [Callahan99].
The other set of benchmarks was created for the Chimera architecture [Hauck97].  In this system, portions of the
code that can accelerate computation are mapped to the reconfigurable coprocessor [Hauck98c].  For both sets of the
benchmarks, the mappings to the coprocessors are referred to RFUOPs.  In order to evaluate the algorithms for
different FPGA models, we need to create an RFUOP sequence for each benchmark that is similar to a memory
access string used for memory evaluation.

The RFUOP sequence for each benchmark was generated by simulating the execution of the benchmark.  During the
simulated execution, the RFUOP ID is output when an RFUOP is encountered.  After the completion of the
execution, an ordered sequence of the execution of RFUOPs is created.  In the Garp architecture, each RFUOP in
the benchmark programs has size information in term of number of rows occupied.  For Chimaera, we assume that
the size of an RFUOP is proportional to the number of instructions mapped.

Configuration Caching Algorithms

In this work, we seek to find caching methods that target the different the FPGA models.  For each FPGA model, we
will develop realistic algorithms that can significantly reduce the reconfiguration latencies.  In order to evaluate the
performance of these realistic algorithms, we also attempt to develop tight lower bound algorithms by using the
complete application information.  For the models where tight lower bound algorithms are unavailable, we will
develop algorithms that we believe could be the near optimal solution.

We divide our algorithms into 3 categories: run time algorithms, complete prediction algorithms, and general off-
line algorithms.  The classification of the algorithms depends on the time complexity and input information needed
for each algorithm.  The run time algorithms require the information available only at run time.  Because of the
limited information at run time, a prediction of keeping a configuration or replacing a configuration may not be
correct and can even cause higher reconfiguration overhead.  Therefore, we believe that these realistic algorithms
will provide upper bound on reconfiguration overhead.  The complete prediction algorithms use complete execution
information of the application.  These algorithms attempt to search the whole application domain in order to lower
the configuration overhead.  We believe these algorithms provide the optimal (lower bound) or near optimal
solution.  Among these algorithms, some are realistic but with very high computation complexity, while others just
provide a realistically unachievable bound.  The general off-line algorithms use profile information of each
application and provide realistic solutions for the caching models.

Simulated Annealing Algorithm for the Single Context FPGA

When a reconfiguration occurs in a Single Context FPGA, even if only a portion of the chip needs to be
reconfigured, the entire configuration memory store will be rewritten.  Because of this property, multiple RFUOPs
should be configured together onto the chip.  In this manner, during a reconfiguration a group (context) that contains
the currently required RFUOP as well possibly one or more later required RFUOPs is loaded.  This amortizes the
configuration time over all of the configurations grouped into a context.  Minimizing the number of the group
(context) loading will minimize the overall reconfiguration overhead.

It is obvious that the method used for grouping has a great impact on the latency reduction; the overall
reconfiguration overhead resulting from a good grouping could be much smaller than that resulting from a bad
grouping.  For example, suppose there are 4 RFUOPs with equal size and equal configuration latency for a
computation, and the RFUOP sequence is 1 2 3 4 3 4 2 1, where 1, 2, 3, and 4 are the RFUOP IDs.  Given a Single
Context FPGA that has the capacity to hold two RFUOPs, the number of context loads is 3 if RFUOPs 1 and 2 are
placed in the same group (context), and RFUOPs 3 and 4 are placed in another.  However, if RFUOPs 1 and 3 are
placed in the same group (context) and RFUOPs 2 and 4 are placed in the other, the number of context loads will be
7.

In order to create the optimal solution for grouping, one simple method is to create all combinations of
configurations and then compute reconfiguration latency for all possible groupings, from which an optimal solution
can be found.  However, this method has exponential time complexity, and is therefore not applicable for real
applications.  In this paper, we instead present a simulated annealing approach to acquire near optimal solution.  For
the simulated annealing algorithm, we use the reconfiguration overhead as our cost function, and the moves consist
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of shuffling the different RFUOPs between contexts.  Specifically, at each step an RFUOP is randomly picked to
move to a randomly selected group, and if there is not enough room in that group to hold the RFUOP, RFUOPs in
that group are randomly chosen to move to other groups.  Once finished, the reconfiguration overhead of the
grouping is computed by applying the RFUOP sequence.  The steps below outline the complete algorithm:

Initially assign each RFUOP to a group such that for each group the total size of all RFUOPs is smaller than or equal
to the size of the context.  Set up parameters of initial temperature, the number of iterations under each temperature.

1. While the current temperature is greater than the terminating temperature:

1.1. While the number of iterations is greater than 0:

1.1.1. A candidate RFUOP is randomly chosen along with a randomly selected destination group to which
the candidate will be moved.

1.1.2. After the move, if the total size of the RFUOPs in the destination group exceeds the size of the
context, a new candidate RFUOP in the destination group is randomly selected.  This RFUOP is then
moved to any group that can hold it.  This step is repeated until all groups satisfy the size constraint.

1.1.3. Execute the newly generated grouping on the RFUOP execution sequence and calculate the number
of times reconfiguration is performed.  The reconfiguration overhead, which is used as the cost
function of this version of simulated annealing, can be calculated by multiplying the number of
context switches by the loading latency of a context.

1.1.4. Compare the new cost to the old cost to determine if the move is allowed, then decrease the number
of iterations by one.

1.2. Decrease the current temperature.

Since configuration caching for the Single Context FPGA is similar to the placement problem in CAD applications,
the simulated annealing algorithm will provide near optimal solution.

General Off-line Algorithm for the Single Context FPGA

Although the simulated annealing approach can generate a near optimal solution, the high computation complexity
and the requirement of knowledge of the exact execution sequences make this solution unreasonable for most real
applications.  We therefore suggest an algorithm more suited for general purpose use.  The Single Context FPGA
requires that the whole configuration memory will be rewritten if a demanded RFUOP is not currently on the chip.
Therefore, if two consecutive RFUOPs are not allocated to the same group, a reconfiguration will result.  Our
algorithm attempts to compute the likelihood of RFUOPs following one another in sequence, and use this
knowledge to minimize the number of reconfigurations required.  Before we further discuss this algorithm, we first
give the definition of a “correlate” as used in the algorithm.

Definition 1:Given two RFUOPs and an RFUOP sequence, RFUOP A is said to correlate to RFUOP B if in the
RFUOP there exists any consecutive appearance of A and B.   

For the Single Context FPGA, the highly correlated RFUOPs are allocated into the same group.  Therefore the
number of times a context is loaded is greatly decreased, and thus the reconfiguration overhead is minimized.  In our
algorithm, we first build an adjacency matrix of RFUOPs.  Instead of using 0 or 1 as a general adjacency matrix
does, the degree of correlation of every RFUOP pairs (the number of times two RFUOPs are next to each other) is
recorded.  The details of our grouping algorithm are as follows:

1. Create an N × N matrix, where N is the number of RFUOPs.  All values of A[i, j] are initialized to 0, where 0 ≤
i, j ≤ N-1.

2. Every RFUOP is assigned to a separate group, and thus initially N groups are formed.

3. Traverse the RFUOP sequence.  If RFUOP i correlates to RFUOP j, increase A[i, j] by 1

4. While the largest A[i, j] > 0, do the following:

4.1. Search the matrix to find two groups i, j such that value A[i, j] + A[j, i] is the largest in the matrix.  If total
size of the RFUOPs in the two groups is less than the size of the context, merge two the groups together,
then go to step 4.2, else go to step 4.3.
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4.2. For any other group k, set A[i, k] and A[k i] to A[k i] + A[k j], and A[j, k] and A[k, j] = 0;

4.3. For any RFUOP i in group 1 and any RFUOP j in group 2, A[i, j] and A[j, i] are assigned the new value 0.
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Figure 3: An example to illustrate the general off-line algorithm for Single Context FPGA.

Figure 3 illustrates an example of the general off-line algorithm.  Each arrow line connects a pair of correlated
RFUOPs and the number next to each line indicates the degree of the correlation.  As presented in the algorithm, we
will merge the highly correlated groups together under the size constraints of the target architecture.  In this
example, assume that the chip can only retain at most 3 RFUOPs at a time.  At the first grouping step we place
RFUOP17 and RFUOP4 together.  In the 2nd step we add RFUOP43 into the group formed at step 1.  We then group
RFUOP2 and RFUOP34 together in step 3, and they cannot be merged with the previous group because of the size
restriction.  Finally, in the 4th step RFUOP22 and RFUOP68 are grouped together.

Compared to the simulated annealing algorithm, this realistic algorithm only requires profile information on the
degrees of correlation between RFUOPs.  In addition, since the number of RFUOPs tends to be much smaller than
the length of the RFUOP sequence, it should be much quicker to find a grouping by searching of the matrix instead
of traversing the RFUOP sequence as the simulated annealing algorithm does.  Therefore, the computation
complexity is significantly lowered.

A Complete Prediction Algorithm for the Multi-Context FPGA

A Multi-Context FPGA can be regarded as multiple Single Context FPGAs, since the atomic unit that must be
transferred from the host processor to the FPGA is a full context.  During a reconfiguration, one of the inactive
contexts is replaced.  In order to reduce the reconfiguration overhead, the number of reconfigurations must be
reduced.  The factors that could affect the number of reconfigurations are the configuration grouping method and the
context replacement policies.

We have discussed the importance of the grouping method for the Single Context FPGA, where an incorrect
grouping may have significantly larger overhead than a good grouping.  This is also true for the Multi-Context
FPGA, where a context (a group of configurations) remains the atomic reconfiguration data transfer unit.  The
reconfiguration overhead caused by the incorrect grouping remains very high even though the flexibility provided by
the Multi-Context FPGA can somewhat reduce part of the overhead.

As mentioned previously, even the perfect grouping will not minimize the reconfiguration overhead if the policies
used for context replacement are not considered.  A context replacement policy specifies which context could be
replaced once a demanded configuration is not in any of the contexts currently present on the chip.  Just as in the
general caching problem where frequently used blocks should remain in the cache, the contexts that are frequently
used should be kept configured on the chip.  Furthermore, if the atomic configuration unit (context) is considered as
a data block, we can view the Multi-Context FPGA as a general cache and apply tactics that worked for the general
cache for the Multi-Context FPGA.  More specifically, we have an existing optimal replacement algorithm called
the Belady [Belady66] algorithm for the Multi-Context FPGA.  The Belady [Belady66] algorithm is well known in
the operating systems and computer architecture fields.  It claims that the fewest number of replacements will occur
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provided the memory access sequence is known.  This algorithm is based on the idea that a data item is most likely
to be replaced if it is least likely to be accessed in the near future.  For a Multi-Context FPGA, the optimal context
replacement can be achieved as long as the context access string is available.  Since the RFUOP sequence is known,
it is trivial to create the context access string by transforming the RFUOP sequence.

Combining the two key factors of grouping and replacement mentioned above, we present our algorithm as follows:

1. Apply the Single Context simulated annealing algorithm to acquire a final grouping of RFUOPs into contexts,
and give each group formed its own ID.

2. Traverse the RFUOP sequence, and for each RFUOP appearing, change the RFUOP ID to the corresponding
group ID.  This will result a context access sequence.

3. Apply the Belady algorithm to the context access string.  Increase the total number of context loads by one if a
replacement occurs.

The reconfiguration overhead for a Multi-Context FPGA is therefore the number of context loads multiplied by the
configuration latency for a single context.  We must also consider the context activation overhead that is incurred by
each context switch.  A context switch occurs when a demanded context is not currently in execution, but is present
on one of the inactive contexts.  Generally, the cost of a single switching operation is negligible compared to a
single context load.  However, the overall switching cost still must be calculated, given that the total number of
switching operations could be much larger than that of the context loads.  This switching cost can be calculated as
the cost of a single switching operation multiplied by the number of switching operations.  Considering the overhead
caused by the context switches, we modify the third step of the algorithm as following:

3. Apply the Belady algorithm to the context access string.  Increase the total number of context loads by one if a
replacement occurs.  Increase the total number of switching operations by one if the accessed context is not the
active context.

As mentioned above, the factors that can affect the performance of configuration caching for the Multi-Context
FPGA are the configuration grouping and the replacement policies.  Since the first step of the algorithm can result in
a near optimal grouping and the third step represents the optimal replacement policy, we consider this algorithm to
be a lower bound on what is possible with a realistic algorithm.  In addition, since the RFUOP sequence is contained
in the profile information, we consider this algorithm to be a general off-line algorithm.

Least Recently Used (LRU) Algorithm for the Multi-Context FPGA

The LRU algorithm is a widely used memory replacement algorithm in operating system and architecture.  Unlike
the Belady algorithm, the LRU algorithm does not require future information to make a replacement decision.
Because of the similarity between the configuration caching problem and the data caching problem, we can apply
the LRU algorithm for the Multi-Context FPGA model.  The LRU is easier to implement than the Belady algorithm,
but because of the limited amount of information used to make a decision, the reconfiguration overhead incurred
through the use of the LRU is higher than that of the Belady algorithm.  The LRU is a run-time algorithm.

Algorithms for the Partial Run Time Reconfigurable FPGA

Compared to the Single Context FPGA, an advantage of the Partial Run-Time Reconfigurable FPGA is its flexibility
of loading and retaining configurations.  Any time a reconfiguration occurs, instead of loading the whole group only
a portion of the chip is reconfigured while the other RFUOPs located elsewhere on the chip remain intact.  The basic
idea of configuration caching for PRTR is to find the optimal location for each RFUOP.  This is to avoid the
thrashing problem, which could be caused by the overlap of frequently used RFUOPs.  In order to reduce the
reconfiguration overhead for the Partial Run-Time Reconfigurable FPGA, we need to consider two major factors:
the reconfiguration frequency and the average latency of each RFUOP.  Any algorithm that attempts to lower only
one factor will fail to produce an optimal solution because the reconfiguration overhead is the product of the two.

A Simulated Annealing Algorithm for the PRTR FPGA

Similarly to the simulated annealing algorithm used for the Single Context FPGA, the purpose of annealing for the
Partial Run-Time Reconfigurable FPGA is to find the optimal mapping for each configuration such that the
reconfiguration overhead is minimized.  For each step, a randomly selected RFUOP is assigned to a random position
within the chip and the exact reconfiguration overhead is then computed.  Before presenting the full simulated
annealing algorithm, we first give the definition of a “conflict” as used in our discussion.
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Definition 2: Given two configurations and their positions on the FPGA, RFUOP A is said to be in conflict with
RFUOP B if any part of A overlaps with any part of B.

We now present our simulated annealing algorithm for the PRTR FPGA.   

1. Assign a random position for each RFUOP.  Set up the parameters of initial temperature, number of iterations
under each temperature, and terminating temperature.  The parameter of old cost is initially set to be infinity.

2. While the current temperature is greater than the terminating temperature:

2.1. While the number of iterations is greater than 0:

2.1.1. A randomly selected RFUOP is moved to a random location within the chip.

2.1.2. Traverse the RFUOP sequence.  If the demanded RFUOP is not currently on the chip, load the
RFUOP to the specified location, and increase the overall reconfiguration latency by the loading
latency of the RFUOP.  If the newly loaded RFUOP conflicts with any other RFUOPs on the chip,
those conflicted RFUOPs are removed from the chip.

2.1.3. Let the new cost be equal to the overall RFUOP overhead and determine whether the move is
allowed.  Decrease the number of iteration by one.

2.2. Decrease the current temperature.

Since finding the location for each RFUOP is similar to the placement problem in physical design, where the
simulated annealing algorithm usually provides good performance, so we believe our simulated annealing algorithm
will create a near optimal solution.

An Alternate Simulated Annealing Algorithm for the PRTR FPGA

In the simulated annealing algorithm presented in the last section, the computation complexity is very high since the
RFUOP sequence must be traversed to compute the overall reconfiguration overhead after every move.  Obviously,
a better algorithm is needed to reduce the computation complexity.  Again, as for the Single Context FPGA, an
adjacency matrix of size N×N is built, where N is the number of the RFUOPs.  The main purpose of the matrix is to
record the possible conflicts between RFUOPs.  In order to reduce the reconfiguration overhead, the conflicts that
will create larger configuration loading latency are distributed to unoverlapped locations.  This is done by modifying
the cost computation step of the previous algorithm.  To clarify, we present the full algorithm:

1. Create an N × N matrix, where N is the number of RFUOPs.  All values of A[i, j] are set to be 0, where 0 ≤ i, j ≤
N-1.

2. Traverse the RFUOP sequence, for any RFUOP j that appears between two consecutive appearances of an
RFUOP i, A[i, j] is increased by 1.  Notice that multiple appearances of an RFUOP j only count once between
two consecutive appearances of an RFUOP.

3. Assign a random position for each RFUOP.  Set up parameters of initial temperature, the number of iterations
under each temperature, and terminating temperature.  The parameter of old cost is set to be infinity.  An N × N
adjacency matrix B is created.  All values of B[i, j] are set to be 0, where 0 ≤ i, j ≤ N-1.

4. While the current temperature is greater than the terminating temperature:

4.1. While the number of iterations is greater than 0:

4.1.1. A random selected RFUOP is reallocated to a random location within the chip.  After the move, if
two RFUOPs i and j conflict, set B[i, j] and B[j, i] to be 1.

4.1.2. For any B[i, j]=1, multiply the value of A[i, j] by the RFUOP loading latency of j.  The new cost is
computed as the summation of the results of all the products.

4.1.3. Determine whether the new move is allowed and decrease the number of iterations by one.

4.2. Decrease the current temperature.

Generally, the number of total RFUOPs is much less than the length of the RFUOP sequence.  Therefore, by looking
up the conflict matrices instead of the whole configuration sequence, the time complexity can be greatly decreased.
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Still, one final concern is the quality of the algorithm because, instead of using configuration sequence, the matrix of
potential conflicts derived from the sequence is used.  Even the matrix may not represent the conflicts exactly,
however, it gives enough information about the potential overall conflicts between any two configurations.

Algorithms for the PRTR FPGA with Relocation and Relocation + Defragmentation

For the PRTR FPGA with Relocation + Defragmentation, the replacement policies have a great impact on reducing
reconfiguration overhead.  This is because the high flexibility available for choosing victim RFUOPs when a
reconfiguration is required.  With Relocation, an RFUOP can be dynamically remapped and loaded to an arbitrary
position.  With defragmentation, a demanded RFUOP can be loaded as long as there is enough room on the chip,
even though the empty space exists in the way of many small portions.  Instead of giving the algorithms for PRTR
FPGA with only Relocation, we first analyze the case of PRTR with both Relocation and Defragmentation.

A Lower Bound Algorithm for the PRTR FPGA with Relocation + Defragmentation

As discussed previously, the major problems that prevent us from acquiring an optimal solution of configuration
caching are the different sizes and different loading latencies of different RFUOPs.  Generally, the loading latency
of a configuration is proportional to the size of the configuration, given fixed a configuration bandwidth.

The Belady [Belady66] algorithm gives the optimal replacement for the case that the memory access string is known
and the data transfer unit is uniform.  Given the RFUOP sequence for the PRTR with Relocation + defragmentation
model, we can achieve a lower bound of our problem if we assume that a portion of any RFUOP can be transferred.
Under this assumption, when a reconfiguration occurs, only a portion of an RFUOP is replaced while the other
portion is still kept on the chip.  Once the removed RFUOP is needed again, only the missing portion (could be the
whole RFUOP) is loaded instead of loading the entire RFUOP.  We present the Lower Bound Algorithm as follows:

1. Traverse the RFUOP sequence, if an RFUOP required is not on the chip, do following:

1.1. Find the missing portion of the RFUOP.  While the missing portion is greater than the free space on the
chip, do following:

1.1.1. For all RFUOPs that are currently on the chip, a victim RFUOP is identified such that in the RFUOP
sequence its next appearance is later than the appearance of others.

1.1.2. Let R = the size of the victim + the size of the free space – the missing portion.

1.1.3. If R is greater than 0, a portion of the victim that equals R is retained on chip while the other portion
is replaced and added to the free space.  Otherwise add the space occupied by the victim to the free
space.

1.2. Load the missing portion of the demanded RFUOP into the free space.  Increase the RFUOP overhead by
the loading latency of the missing portion.

The correctness of the algorithm is proven by the following theorem.

Theorem:  Given RFUOPs R1, R2, R3, …, Rm, with sizes of S1, S2, S3, …, Sm atomic configuration units, and RFUOP
sequence C1, C2, C3, …, Cn, the Lower Bound Algorithm provides a lower bound for the PRTR with Relocation +
Defragmentation model.

Proof:  We can transform the RFUOP sequence C1, C2, C3, …, Cn to (Ri1, Si1), (Ri2, Si2), (Ri3, Si3), …, (Rin, Sin), where
Rij belongs to (R1, R2, R3, …, Rm) and Sij belongs to (S1, S2, S3, …, Sm).  We will then further extend this sequence to:
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Now the size of every Rij in the sequence is equal to the atomic configuration unit.

In our algorithm, we assumed that portion of the any RFUOP can be retained on the chip, and during reconfiguration
only the missing portion of the demanded RFUOP will be loaded.  This can be viewed as loading multiple atomic
configuration units.  Therefore, this problem can be viewed as the general caching problem, with the atomic
configuration unit as the data transfer unit.  Since the Belady [Belady66] algorithm provides the optimal replacement
for the general caching problem, it can also provide the lowest configuration overhead for the PRTR with Relocation
+ Defragmentation.
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A General Off-line Algorithm for the PRTR FPGA with Relocation + Defragmentation

Since the Belady [Belady66] algorithm can provide a lower bound for the fixed size problem, some ideas can be
transferred into our algorithm.  As in the Belady [Belady66] algorithm, for all RFUOPs that are currently on chip,
we identify the one that will not appear in the RFUOP sequence until others have appeared.  But instead of replacing
that RFUOP, as in the Belady [Belady66] algorithm, the victim configuration is selected by considering the factors
of size and loading latency.  The details of the algorithm are as follows:

1. Traverse the RFUOP sequence.  If a demanded RFUOP is not currently on the chip, do the following.

1.1. While there is not enough room to load the RFUOP, do the following:

1.1.1. For all RFUOPs on chip, find their next appearances.  Among these appearances, find the one
furthest in the future.

1.1.2. For each RFUOP, calculate the total number of appearances between the current appearance and the
furthest appearance identified.

1.1.3. For each RFUOP, multiply the loading latency and the number of appearances, the RFU with the
smallest value is replaced.

1.2. Load the demanded RFUOP.  Increase the overall latency by the loading latency of the RFUOP.

The steps 1.1.1 – 1.1.4 specify the rules to select the victim RFUOP.  Counting the number of appearances of each
RFUOP is to get the frequency of the RFUOP to be used in near future.  As we mentioned, this is not adequate to
determine a victim RFUOP, because an RFUOP with lower frequency may have much higher configuration latency.
Therefore, by multiplying the latency and the frequency, we can find the possible overall latency in near future if the
RFUOP is replaced.  Moreover, by considering the size factor, we choose the victim configuration that has the
smallest latency to size ratio.

Run Time Algorithms for the PRTR FPGA with Relocation + Defragmentation

In order to further evaluate the performance of the PRTR with Relocation + Defragmentation FPGA model two real-
time algorithms, a LRU algorithm and a penalty oriented [Young94] algorithm, are implemented.  These two
algorithms take the RFUOP sequence as the input at run time and do not need future information.

LRU Algorithm for the PRTR FPGA with Relocation + Defragmentation

Since the PRTR with Relocation plus Defragmentation model can be viewed as a general memory model, we can
use a LRU algorithm for our reconfiguration problem.  Here, we traverse the RFUOP sequence and when a
demanded RFUOP is not on the chip and there is not enough room to load the RFUOP, an RFUOP on the chip is
selected to be removed by LRU algorithm.

Penalty Oriented Algorithm for the PRTR FPGA with Relocation + Defragmentation

Since the non-uniform size of RFUOPs is not considered as a factor in LRU algorithm, a high RFUOP overhead
could potentially result.  For example, consider an RFUOP sequence 1 2 3 1 2 3 1 2 3 …, RFUOPs 1, 2 and 3 have
sizes of 1000, 10 and 10 programming bits respectively.  Suppose also that the size of the chip is 1010 programming
bits.  According LRU algorithm, the RFUOPs are replaced in same order of the RFUOP sequence.  It is obvious that
configuration overhead will be much smaller if RFUOP 1 is always kept on the chip.  This does not mean that we
always want to keep larger RFUOPs on the chip as keeping larger configurations with low reload frequency may not
reduce the reconfiguration overhead.  Instead, both size and frequency factors should be considered in the algorithm.
Therefore, we use a variable “credit” to determine the victim.  Every time an RFUOP is loaded onto the chip, its
credit is set to its size.  When a replacement occurs, the RFUOP with the smallest credit is evicted from the chip and
the credit of all other RFUOPs on the chip is decreased by the credit of the victim.  To make this more clear, we
present the algorithm as follows:

1. Traverse the RFUOP sequence.  If a demanded RFUOP is currently on the chip, set its credit equal to its size.
Else do following:

1.1. While there is not enough room to load the required RFUOP:

1.1.1. For all RFUOPs on chip, replace the one with the smallest credit and decrease the credit of all other
RFUOPs by that value.
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1.2. Load the demanded RFUOP and set its credit equal to its size.

A General Algorithm for the PRTR FPGA with Relocation

One major advantage that the PRTR with Relocation + Defragmentation has over the PRTR with Relocation is the
ability to have higher utilization of the space on the chip.  Any small fragments can contribute to one larger area
such that an RFUOP could possibly be loaded without forcing a replacement.  However, for PRTR with only
Relocation those fragments could be wasted.  This could cause an RFUOP that is currently on chip could be
replaced and thus may result in extra overhead if the replaced RFUOP is demanded again very soon.  In order to
reduce the reconfiguration overhead for this model, the utilization of the fragments must be improved.  We present
the algorithm as following:

1. Traverse the configuration sequence.  If a demanded configuration is not currently on the chip, do the following.

1.1. While there is not enough room to load the RFUOP, do the following:

1.1.1. For all RFUOPs on chip, find their next appearances.  Among these appearances, find the furthest
one from the current demanded RFUOP.

1.1.2. For each RFUOP, calculate the total number of appearances between the demanded RFUOP and the
furthest appearance identified on last step.

1.1.3. For each RFUOP, multiply the loading latency and the number of appearances.  Then divide this
value by the size of the RFUOP, producing a cost.

1.1.4. For each RFUOP on chip, presume that it to be the candidate victim, identify the next configurations
that must also be removed to make room for the demanded RFUOP.  Sum up the costs of all the
potential victims.

1.1.5. Identify the smallest the sum of each RFUOP, and victims that produce the smallest cost are
replaced.

1.2. Load the demanded RFUOP.  Increase the overall latency by the loading latency of the configuration.

The heuristic that applied to the PRTR with Relocation + Defragmentation is also implemented in this algorithm.
The major difference for this algorithm is to use as many empty fragments as possible, reducing the reconfiguration
overhead by replacing either fewer configurations or smaller configurations.

Simulation results

All algorithms are implemented in C++ on a Sun Sparc-20 workstation. Table 1 shows reconfiguration overhead of
the algorithms on the benchmarks.  The definition of “size” indicates capacity of the chip.  “1” represents the base
capacity, which is the least multiple of ten larger than the size of the largest RFUOP.  The other values for size
represent the ratio of the FPGA size to the base capacity.  Figure 4 demonstrates the reconfiguration overhead vs.
FPGA size.  For each benchmark, we first normalize the reconfiguration penalty for each algorithm, then we
calculate the average for each algorithm.  As can be seen in Figure 4, the reconfiguration penalties of the PRTR and
the Multi-Context models are about 75% and 85% less than that of the Single Context model.  For the two new
models we discussed, PRTR with Relocation and the PRTR with Relocation + Defragmentation, the reconfiguration
penalties are about 85% and 90% less than that of the Single Context model.

Bench Size Single Context Partial Partial Reloc Partial Relocation + Defragmentation Multi-Context

Simulate A General Simulate I Simulate Il General Optimal General LRU Penalty General LRU

1 442560 461760 109652 121301 82854 64595 78542 123906 106554 90400 162400

1.25 364800 379200 90654 94396 65599 46330 56517 117232 91432 80500 161500

1.5 406080 400320 69179 79472 46242 30139 36710 107654 69845 72000 76800

1.75 423360 423360 66066 30876 29264 16576 21652 84636 43399 29400 56300

G
o

2 291840 288000 45666 29272 15580 7776 9720 31232 20866 4000 4800

Perl 1 10327680 11340960 2333743 2659040 2114457 1750762 2279647 2565527 2642261 2481500 3673700
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1.25 11946000 16258200 2145665 2345660 1927136 1509741 1917227 2447775 2455968 2464250 3352875

1.5 11143500 15756480 2245434 2285316 1641843 1294499 1688077 2266006 2127938 2430000 3329700

1.75 13500900 18189780 1967722 2095221 1438792 1113794 1465085 2141724 1901806 1945125 2989875

2 9821760 13660320 1973449 2030283 1222860 944679 1207741 1938961 1756577 2350600 3960400

1 9992500 10294500 9534595 9672211 6695022 4305660 5619275 10411182 8443375 4161500 7781500

1.25 11721250 14503120 5427786 6392619 4017768 2271989 3083254 8967020 5968650 1552500 2786875

1.5 7385250 7956000 3098876 3265848 2098129 1073299 1369862 4084820 2919774 1168500 2251500

1.75 5512500 5642000 1700895 1478998 967818 553594 785300 1746796 1503056 321125 571375

F
pppp

2 4134000 4297000 1126934 945945 603276 290630 496440 1695305 931576 113000 126000

1 219120 237360 83409 91152 56500 26127 32537 40358 37637 25600 38300

1.25 239700 264900 30879 34095 56816 21377 24788 27644 34978 32000 47875

1.5 235440 300600 28964 31586 50540 18321 21835 27480 37224 23100 42300

1.75 67620 64260 27054 27497 48102 15321 15656 27264 18938 18375 40075

com
press

2 42240 49440 20381 24436 43739 12324 13479 27171 21475 21000 41300

1 3861360 4382640 220403 273902 213907 126131 144793 358178 366564 421700 559400

1.25 2949399 2288700 90977 125673 92936 47001 57871 143309 150583 54375 54625

1.5 675720 783720 54862 63955 47754 7881 11063 54671 64650 63150 66300

1.75 388800 459900 27636 33544 13525 2274 2369 6616 5373 70175 73675

li

2 328800 360480 1203 2755 1521 852 874 1317 1319 1400 1400

1 42840 51240 2028 2332 1594 1570 1570 1707 2119 3150 4550

1.25 28323 34617 1694 1783 1570 1570 1570 1683 1912 2622 2622

1.5 22680 26460 1638 1646 1570 1570 1570 1659 1672 2100 2100

1.75 4407 4407 1594 1594 1570 1570 1570 1639 1646 1836 1836

P
erl.garp

2 1680 1680 1590 1590 1570 1570 1570 1570 1570 2100 2100

1 26400 26400 18766 19083 10674 4247 10155 14928 15298 160 160

1.25 7320 7200 15436 16097 9799 860 1759 3939 3646 200 200

1.5 135 135 135 135 135 135 135 135 135 180 180

1.75 135 135 135 135 135 135 135 135 135 140 140

D
ss.garp

D
ss.garp

2 135 135 135 135 135 135 135 135 135 160 160

1 9516000 10299840 604598 721357 204573 162659 199311 205791 227166 421800 549600

1.25 8338800 10061400 601344 681920 185089 151097 182584 193556 212051 476500 613250

G
o.garp

1.5 8780400 10764720 554567 661089 172023 140516 167725 187284 199239 514200 663600

1.75 9227400 12056520 543013 631345 161257 130740 154438 181633 187239 528850 685300

2 7541760 13257600 498762 571709 149992 121485 144812 178732 179336 471600 602400

Table 1: Reconfiguration Penalties of different algorithms.
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Figure 4: Reconfiguration penalties of different caching algorithms.

Conclusions

Configuration caching, which configurations are retained on chip until they are required again, is a technique to
reduce the reconfiguration overhead.  However, the limit the on-chip memory and the non-uniform configuration
latency add complexity in deciding which configurations to retain to maximize the odds that the required data is
present in the cache.  To deal these problems, we have developed new caching algorithms targeted at a number of
different FPGA models.  In addition to the three currently dominant models (Single Context FPGA, Partial Run-
Time Reconfigurable FPGA, and Multi-Context FPGA), we proposed two new models, the PRTR with Relocation
model and the PRTR with Relocation + Defragmentation model.  For each model, we have implemented a set of
algorithms to reduce the reconfiguration overhead.  The simulation results demonstrate that the Partial Run-Time
Reconfigurable FPGA and the Multi-Context FPGA are significantly better caching models than the traditional
Single Context FPGA.

Appendix I

Based on the structures given and presented in the paper, the size equations for the different FPGA models are as
follows:

Row = number of rows of configuration bits

Col = number of word-size columns of configuration bits (we use 32 bits /word)

Single Context: 291264 × Row × Col

PRTR: 260336 × Row × Col + 476 × Row + 392 × Row × lg Row + 367217.5 × Col + 487.5 × Col × lg Col

Multi-Context (4 contexts): 636848 × Row × Col + 476 × Row + 392 × Row × lg Row + 385937.5 × Col+ 487.5 ×
Col × lg Col

PRTR Relocation: 260336 × Row × Col + 476 × Row + 392 × Row × lg Row + 367217.5 × Col + 487.5 × Col ×
lg Col + 20300 × lg Row

PRTR Relocation & Defragmentation: 260336 × Row × Col + 476 × Row + 392 × Row × lg Row + 407404 × Col

+ 392 × Col × lg Col + 365040 + 30186 × lg Row
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Given these equations, the different styles will have the following area for 1 Megabit of configuration information
(for the Multi-Context, 1 Megabit of active configuration information, 3 Megabits of inactive information).

Single Context: 9.544 × 109 lambda2

PRTR: 8.547 × 109 lambda2

Multi-Context (4 contexts): 20.885 × 109 lambda2

PRTR w/ Relocation: 8.547 × 109 lambda2

PRTR w/ Relocation & Defragmentation: 8.549 × 109 lambda2
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