
1

Totem: Domain-Specific Reconfigurable Logic
Scott Hauck1, Katherine Compton2, Ken Eguro1, Mark Holland1, Shawn Phillips3, Akshay Sharma1

1 University of Washington, Dept. of EE, Seattle, WA, {hauck, eguro, mholland, sharma}@ee.washington.edu
2 University of Wisconsin – Madison, Dept. of ECE, Madison, WI, kati@engr.wisc.edu

3 Annapolis Microsystems, Inc., Annapolis, MD, sphillips@annapmicro.com

Abstract
FPGAs have an important role to play in System-on-a-Chip (SoC) designs by providing programmable
hardware resources within complex ASIC designs. However, because the FPGA logic is custom-fabricated
with the overall SoC, we have an opportunity to optimize that logic to the SoC’s specific needs. This gave
rise to the Totem Project, which automates the creation of domain-specific reconfigurable logic. In this
paper we present the lessons learned from the Totem Project, including how best to create domain-specific
architectures, how to instantiate that logic into silicon, and how to create CAD tools to support these
architectures. We also quantify how much improvement these optimizations provide over standard cells and
tile-based FPGA logic. Finally, we consider the role of flexibility in domain-specific reconfigurable logic,
and present strategies on how best to provide the right amount of flexibility.

Introduction
Reconfigurable logic devices, in the form of FPGAs, PALs, or CPLDs, are a powerful tool in the digital designer’s
toolbox. With prefabricated yet electrically configurable logic, these devices provide an ideal prototyping medium
and a cost-effective solution for low to medium volume systems. Their flexibility and reprogrammability enable
bug fixes, functionality upgrades, and even run-time reconfiguration techniques. Also, as their capacity and
performance have increased, reconfigurable devices have become capable of supporting entire complex systems in a
single device.

With Systems-on-a-Chip (SoCs) integrating multiple disparate functionalities onto a single piece of silicon, it is
natural to question the future of reconfigurable logic. Proponents of field-programmable Systems-on-a-Chip argue
that the increasing capacity of FPGAs, coupled with the increasing costs of custom fabrication, point to the use of
large FPGAs to implement entire systems. However, there will always be applications with performance, power,
density, or other requirements that simply cannot be supported in a commodity FPGA. These systems will require
custom fabrication, yet can still benefit from reserving some portion of the chip for reconfigurable logic. Although
perhaps 90% of the silicon area may be fixed logic, microprocessors, memories, or other standard logic components,
inserting reconfigurable logic into the remaining 10% of the chip can provide the benefits of reconfigurability to
SoC designers. Bug fixes, in-the-field upgrades, run-time-reconfiguration, and other considerations are even more
applicable in SoC than they have been in the System-on-a-Board methodology.

The obvious solution is to directly use existing stand-alone reconfigurable logic structures inside SoC designs. The
basic tiles of an FPGA, PAL, or CPLD can be provided as a hard or soft macro to the chip designer, and directly
fabricated into the SoC silicon. For example, Xilinx provides some versions of their higher-end FPGA cores to
IBM, which has embedded Xilinx reconfigurable blocks in some of its ASIC designs [Xilinx04]. Actel has created a
generic FPGA fabric (called an embedded programmable gate array, or EPGA) that can be embedded into an SoC
[Actel04]. The size of these VariCore EPGAs in ASIC equivalent gate densities range from 5K to 40K.

Although translating standard commodity reconfigurable logic into IP could be an easy way to provide
reconfigurability in SoC, it is not clear that the requirements of SoC systems and those of stand-alone reconfigurable
logic are the same. For example, while a commodity chip may need to support a wide variety of applications, an
individual SoC might need reconfigurable logic only to support DSP, control logic, or some other style of circuit.
Thus, if the reconfigurable logic were optimized to the required domain, a significantly higher-quality system might
be possible. There are several companies that are pursuing this option. For example, LSI has created LiquidLogic
[LSI04], composed of reconfigurable macro cells designed to be embedded into SoCs, as well as an input-output
bank that interfaces with other ASIC circuitry on the SoC. The smallest reconfigurable unit in the architecture is a 4-

2

bit ALU. Elixent offers their D-Fabrix, which is also based on a sea-of-ALUs [Elixent03]. In the academic world,
Wilton’s group has developed directional architectures that work well in standard cell flows [Kafafi03, Yan03].

Unfortunately, it is not possible to hand-tune an architecture for every possible situation. First, the number of
possible application domains is quite large. Also, a single reconfigurable subsystem may be required to implement
circuits from multiple circuit domains, greatly increasing the number of unique architectures needed. Finally, hand-
customizing the hardware for each domain or specific SoC would increase design costs dramatically, sabotaging the
value of domain-specific reconfigurable cores.

In 1999 our research group asked a simple question – what if we created a system to automatically optimize
reconfigurable logic for different SoC designs? Can we significantly improve the quality of these systems, and if so,
how? These observations led to the Totem Project, an effort to automate the creation of domain-specific
reconfigurable logic. After 6 years and 6 theses, we can begin to answer these fundamental questions. This paper
represents the results of our efforts, focusing on the large-scale implications. In this paper, instead of concentrating
on the individual techniques and research approaches, we instead hope to show what, in our view, is crucial in the
realm of domain-specific reconfigurable logic.

Before we discuss the research results, we first present the overall Totem flow, breaking the domain-specific FPGA
generation task into three major components: Architecture Generation, Layout Generation, and P&R Tool
Generation. We then cover our two major testbeds – RaPiD arrays, and CPLDs. Finally, we conclude with an in-
depth discussion of the ramifications and lessons of the Totem project. We hope that this paper provides guidance
on how best to employ FPGAs in upcoming SoC designs, as well as a base for future research in this important field

Totem - Creation of Domain-specific Reconfigurable Logic

The goal of the Totem Project is to provide a complete automatic path for the creation of custom reconfigurable
hardware, targeted for use in Systems-on-a-Chip (SoCs). There are three primary components of the project. The
first is the high-level architecture generation, which determines the resource requirements and how those resources
should be arranged. It creates the description of both the logic blocks and the programmable interconnect. The
second component is the VLSI layout generator, which takes a description of the architecture from the high-level
architecture generator and translates it into actual transistors and layout masks. Its primary goal is to provide the
most efficient implementation in terms of area, power, and/or performance. The final module is the place and route
tool generator, which creates the CAD suite for the architecture. The resulting tools handle the mapping of user
designs onto the programmable substrate created by the architecture and layout generators.

Architecture
Generator

Domain
description Constraints

architecture
description

VLSI
Layout

Generator

P & R
Tool

Generator

Layout
Masks

+

*

LUT

Place

Route

01101100…

Circuit
Architecture
Generator

Domain
description Constraints

architecture
description

VLSI
Layout

Generator

P & R
Tool

Generator

Layout
Masks
Layout
Masks

+

*

LUT+

*

LUT+

*

LUT

Place

Route

01101100…

Circuit

Place

Route

01101100…

Circuit

Figure 1. Totem system flow.

3

Totem Target Technologies
Although the generic flow from Figure 1 is applicable to the creation of almost any style of reconfigurable logic,
different types of logic will require different algorithms for each of these steps. So far in the Totem project we have
focused on two different architectural styles: RaPiD, a coarse-grained architecture developed for signal processing
applications, and CPLDs, supporting arbitrary logic in their generic PAL/PLA blocks and crossbar interconnects.
We discuss these testbeds and the techniques specific to each in the next sections.

RaPiD

The disparity between the coarse-grained nature of many computations (such as those needed for DSP), and the fine-
grained nature of traditional FPGAs, leads to inefficiencies in hardware implementations. The RaPiD system
[Ebeling96, Cronquist99] addresses this problem by using a very coarse-grained structure. This style of architecture
has specialized computational elements such as ALUs, RAMs, and multipliers, each operating on full words of data.
The components are arranged along a one-dimensional axis, and connected by word-width routing tracks. The
architecture is heavily pipelined to provide very fast computations on streams of data. While the routing flexibility
is somewhat lower than standard FPGAs, the routing architecture complexity is also lower, reducing routing area as
well as simplifying the routing process.

G
PR

R
A

M

R
A

M

G
PR

M
U

LT

G
PR

A
LU

A
LU

G
PR

G
PR

R
A

M

A
LU

G
PR

G
PR

R
A

M

R
A

M

G
PR

M
U

LT

G
PR

A
LU

A
LU

G
PR

G
PR

R
A

M

A
LU

G
PR

Figure 2. The RaPiD datapath.

RaPiD logic units are grouped into a basic cell, as shown in Figure 2; multiple copies can be abutted to create larger
arrays. The logic units within the cells operate on full words of data, and include 16-bit ALUs, 16x16 multipliers,
16-bit wide RAM units, and 16-bit registers. Each component contains a multiplexer on each of its inputs that
chooses between the signals of each routing track. Each component also has a demultiplexer on each of the outputs
that allows the unit to directly output to any of the routing tracks. Inputs are on the left side of a logic unit, while the
outputs are on the right side of the unit (designated by a single vertical line for each).

The routing architecture itself is a one-dimensional segmented design, where each track is composed of as many
wires as the word width of the architecture (16-bits in the original implementation). Full words of data are therefore
communicated between the computational units of the architecture. There are 14 routing tracks, plus one additional
routing track that only contains "feedback" wires. These feedback wires are only permitted to route an output of a
unit back to one or more of the inputs of the same unit. Additionally, a word-sized "zero" is also provided as a
possible input to each multiplexer. The top five routing tracks are local routing tracks, including the special
feedback track. These tracks contain short wires for fast short-distance communication. The bottom ten tracks
provide longer distance routing. The small squares on these routing tracks are bus connectors, which allow the wire
segments to be optionally connected to form longer wires. Additionally, the bus connectors provide optional
pipeline registers to mitigate the delay added through the use of longer wires and routing switches.

4

RaPiD-style architectures are an interesting testbed for the Totem approach for multiple reasons. First, RaPiD is
already a domain-specific architecture, optimized to signal processing applications. Thus, this allows us to see how
much customizing an architecture to a specific user’s needs improves over a manually domain-optimized
architecture. Also, the 1D nature of the interconnect simplifies some of the steps in Totem, since 2D versions of
problems such as layout generation are more difficult to solve than 1D versions. Finally, colleagues at U.W. had
full-custom layouts of the architecture, a mapping flow, and benchmark designs to serve as a comparison for manual
design and layout techniques [Ebeling96, Cronquist99].

In the Totem-RaPiD system we optimize both the interconnect and the logic [Compton01, Compton03, Compton06].
For the logic blocks, we can adjust the mix of different types of logic units [Eguro03, Eguro05a], and their
placement within the overall array. Also, we have considered the introduction of a completely new set of basic logic
elements optimized for private-key encryption [Eguro02]. In terms of interconnect, the optimizations determine the
number and length of the short and long wires in the RaPiD interconnect, as well as the number and location of
pipelining registers [Compton02, Compton03a].

Figure 3. PAL (left) and PLA (right) structures [Biehl93].

CPLD

In SoC designs we expect to dedicate a small amount of the chip area (perhaps 10%) to reconfigurable logic. For
board-level designs, the best reprogrammable implementation strategy for small logic functions is PALs, PLAs, and
CPLDs. A Programmable Array Logic (PAL) is a device optimized for implementing two-level sum-of-products
logic equations (Figure 3 left). The device consists of a set of arbitrary product terms (the AND gates) leading to
fixed summation terms (the OR gates) that produce the chip’s outputs. The product terms are logic structures that
can be programmed to implement an AND of any combination of its inputs.

One limitation of a PAL is that product terms cannot be shared between outputs. Thus, if two outputs both require
the product term A BC , they would each need to generate the function with their own product terms. A different
form of PLD, called a Programmable Logic Array (PLA), allows product terms to be shared between output
functions (Figure 3 right). In a PLA, the AND array of product terms (the AND plane) leads to a similar OR array
(the OR plane). PLAs are characterized by their number of inputs, product terms, and outputs, shown numerically
as (in-pt-out). While PLAs have more flexibility than PALs since the connections between the AND and OR gates
are programmable, this flexibility results in lower performance. The performance degradation is primarily due to
the fact that in a PLA a signal must travel through two programmable connections (one in the AND plane, one in the
OR plane), while in a PAL the signal goes through only one programmable connection.

5

Switch MatrixSwitch Matrix

Figure 4. CPLD structure. The switch matrix provides configurable connectivity between the inputs,
logic arrays, and any feedbacks from the outputs [Biehl93].

While the previous structures are fine for small PLDs, they may not scale to larger arrays. Primarily, as the PLD
gets larger, the number of connections to a given product term also grows larger, slowing down the signal
propagation and increasing the required area. To combat this problem, Complex Programmable Logic Devices
(CPLDs) break the system up into several smaller product term arrays, connected together with a switch matrix
(Figure 4). Thus, the CPLD can be viewed as an interconnection network connecting together a collection of
smaller PLDs. This network can either be a full crossbar, where each output can talk to any input, or a sparse
crossbar, which reduces the connection flexibility in order to improve area, power, and performance. In this way,
the CPLD can have much larger capacity than a single PLD, while keeping propagation delays low.

In our investigations into Totem-CPLD, we have considered SRAM-programmable PALs, PLAs, and CPLDs
[Holland05]. For the PALs and PLAs, we have created techniques for automatically removing portions of the
programmable structure unneeded for a given set of applications [Holland04]. At the CPLD level, we consider
adjustments to the base PLAs in the structure (by altering their number of inputs, product terms, and/or outputs), the
number of PLAs, and the richness of the interconnect structure [Holland05a].

Implications of the Totem Project
Based on our efforts in the Totem project, we believe we now have a good understanding of many issues in the
generation of domain-specific reconfigurable logic. In the sections that follow, we will discuss what we have
learned, and the resulting implications for potential users of reconfigurable logic in SoC. We will also point out
what we feel are the right areas for future research. We have chosen to structure this discussion as a set of questions
and answers, concentrating on the results and implications of the Totem efforts. For those readers interested in the
exact algorithms and other details for the approaches, we have also included references to specific papers, theses,
and technical reports that expand on those topics. Overall, this section begins by considering domain-specific logic
as a whole, then progresses through issues specific to architecture generation, layout generation, and tool generation.

1. What is a domain?

In the world of commodity IC’s, the concept of a “domain” is fairly straightforward. A domain is a set of related
computations that have similar features—similarities that allow a single commodity device or approach to efficiently
support these computations. A domain can be somewhat broad, such as incorporating all of signal processing. In

6

this domain, most applications are high-bandwidth and compute-intensive in nature, and generally focus on word-
width computations. However, since the domain is fairly large, a variety of resources and a flexible routing
structure must still be provided. Alternatively, a domain can be more specialized, where all computations within a
domain are extremely similar, or are a subset of a larger domain. To continue the previous example, a smaller
domain within DSP could include only FIR filters, allowing a designer to use hardware even more optimized than
something created for DSP in general.

Although initially we viewed a “domain” as discussed above, after several experiments we discovered that this was
an inaccurate, or at least incomplete, view. The driving force of the domain definition is not always circuit
similarity, but rather the target use of the SoC. A “domain” is dictated by the designer of the SoC, and a domain-
specific subsystem is a subsystem that best supports those circuits the SoC designer plans to map to that subsystem.
For one SoC, the “domain” may be “encryption protocols”, if that will be the only use of the reconfigurable logic.
Another SoC, perhaps one intended for use in a mobile videophone, might use the reconfigurable logic to implement
the Rijndahl encryption algorithm AND a video compression engine AND a software defined radio. The truth is
that “domain”, as it applies to customized reconfigurable cores, is whatever the SoC designer wants and needs it to
be. For restricted domains, the circuits will have many common features and the reconfigurable logic can be highly
optimized, yet limited in what it can support. For more generic domains, the circuits can have few common
features, and the resulting reconfigurable logic must be more flexible and thus less highly optimized.

2. How much better is domain-specific than domain-generic?

There are several alternatives to domain-specific logic. Circuits can be implemented directly in ASIC logic via a
standard cell flow, avoiding the overhead of programmability. Or, if reconfiguration is desired, standard FPGA tiles
can be included on the SoC, avoiding the need to customize the logic to a specific domain. Thus, domain-specific
implementations are only useful if they offer a significant quality improvement over standard FPGA tiles, while
retaining the ability to be reconfigured to handle multiple circuits.

Table 1 Area comparison of domain-specific reconfigurable logic with other implementation
technologies [Compton03]. Results are area in mm2. “fail” represents cases where the domain fails to
map to the technology, and these cases are ignored for the means at the bottom.

 FPGA RaPiD Domain-Specific
(AMO RaPiD)

Standard
Cells

cASIC

Radar Processing 19.719 4.996 2.877 4.101 1.520
OFDM 59.157 fail 20.800 9.168 4.574
Digital Camera 23.006 fail 8.768 7.268 2.475
Speech Processing 78.877 79.937 37.635 26.523 13.010
Image Processing 19.719 fail 3.681 6.843 1.833
FIR 26.292 6.661 3.630 2.846 2.004
Matrix Multiplication 19.719 3.331 2.347 1.785 1.264
Sorters 26.292 4.996 3.476 1.541 1.487
Geo. Mean (AMO-normalized) 4.76 1.69 1.00 0.81 0.40
Geo. Mean (Standard Cell norm) 5.90 2.20 1.24 1.00 0.50

Our efforts on Totem-RaPiD provide insight into the area impacts of domain-specific architectures (note that we do
not include delay because the limitations of current pipelining routers make the delay results somewhat suspect). As
shown in Table 1, we compare the area costs of multiple domains (each consisting of many different circuits) on
FPGAs, RaPiDs, and standard cells, as well as two domain-specific techniques. AMO (Add Max Once, named for
the interconnect generation algorithm), is a technique for architecture generation that yields very flexible, yet area-
efficient, RaPiD-style domain-specific architectures. Configurable ASIC (cASIC) produces inflexible structures
reconfigurable only within the provided circuit set, akin to a custom datapath.

The first things to consider are the FPGA, RaPiD, and standard cell columns. In the standard cell process, we use
very tight standard cell layouts and fixed interconnect wires. As such, it provides a very dense implementation of
circuits. FPGAs, represented in this study by the Xilinx Virtex-II, have a much larger area because both their logic
and routing must be programmable, though they can reuse area between different circuit mappings via

7

reconfiguration. In our tests the FPGA solution was 5.9x larger than standard cells, representing the large costs of
complete flexibility. RaPiD represents a compromise of sorts between standard cells and FPGAs. By restricting the
interconnect and logic to support specific styles of circuits, yet retaining some programmability, the areas should
move closer to those of standard cells. Indeed, for those benchmarks that successfully map to RaPiD, the
implementations are only 2.2x larger than standard cells, and 2.68x smaller than FPGAs. However, the table also
demonstrates that this approach comes at a cost – many of the domains considered simply do not fit onto RaPiD
because of RaPiD’s limited interconnect. Any fixed architecture runs the risk of not meeting the requirements of a
given designer’s circuits.

The column “Domain-Specific” demonstrates the advantages of optimizing the reconfigurable logic for the actual
targeted domain specified by the SoC designer. These implementations are significantly smaller than a fixed RaPiD,
even though we use similar structures and interconnects, because we tailor the exact mix to the designer’s actual
circuits. In fact, we also are able to accommodate domains that RaPiD does not – our tools add logic and
interconnect resources to fit the members of the domain. Using the Totem generator, we achieve a 4.76x smaller
implementation than that of FPGA-based tiles, and a 1.69x smaller than even a fixed domain-specific architecture
such as RaPiD, while still ensuring that it can actually handle all of the circuits the user requires.

When compared to the standard cell implementations, our domain-specific implementations pay merely a 1.24x area
increase for adding programmability to their structures, instead of the 2.20x of RaPiD or the 5.90x of FPGAs. We
are able to approach the efficiency of a standard-cell flow partially by restricting the flexibility to what is needed by
the actual domain, and also by using well-crafted layouts of the basic elements (similar to a macro-cell approach).

Earlier we stated that cASICs are very limited in their configurability. In fact, they can only be configured between
the specific circuits used to generate the hardware. Since they use our macrocells, and have direct point-to-point
routing with little or no programmability, they represent an implementation close in quality to a full-custom layout.
This style of circuit can be useful for cases where the exact circuits are known, and no additional flexibility is
required. In this case, a cASIC can be used in place of a series of standard-cell circuits to reduce the area required.
However, they fail in one of the main goals of reconfigurable subsystems for SoC – the ability to handle new circuits
that are similar to, but not exactly the same, as those the SoC designer initially provided.

Table 2. Area-delay product comparison of domain-specific CPLDs with domain-generic CPLDs
[Holland05, Holland05a]. Results are normalized to the domain-specific results. The logic unit sizes are
given in (inputs – product terms – outputs) format at the top of the columns.

Xilinx

(36-48-16)
El Gamal
(10-12-4)

PLAmap
(10-20-5)

Domain-
Specific

Comb
(9-80-4)

Seq
(18-42-8)

FP
(8-18-2)

Arith
(7-14-2)

Encrypt
(13-46-4)

Combinational 13.88 13.63 5.27 1.00 1.00 9.46 5.37 4.26 4.04
Sequential 1.84 2.47 1.96 1.00 3.46 1.00 3.81 6.04 2.05

Floating Point 29.43 13.15 7.37 1.00 2.93 15.76 1.00 1.02 3.26
Arithmetic 40.32 41.48 14.95 1.00 7.11 33.49 1.82 1.00 6.34
Encryption 7.52 4.16 2.85 1.00 1.40 3.42 1.09 1.19 1.00
Geo. Mean 11.79 9.48 5.04 1.00 2.51 7.02 2.10 1.99 2.80

Domain-specific logic is also beneficial for CPLD-style architectures. Table 2 shows the area-delay product of
mapping a set of domains to both domain-specific and domain-generic architectures. Several baselines are provided
for comparison. “Xilinx” represents an architecture similar to the commercial Xilinx CoolRunner devices; “El
Gamal” is a design from a 1991 academic analysis of PLA sizings in reprogrammable architectures by Kouloheris
and El Gamal [Kouloheris91]; “PLAmap” is a manually-designed structure based on our own initial analysis of
running several LGSynth93 circuits through the CPLD technology mapper (PLAmap [Chen01]) used in our
research. The results indicate that converting from a commodity, standardized architecture to a domain-specific one
represents an improvement of 5.04x to 11.79x in area-delay product—a huge improvement.

One might contend that the positive results do not reflect the high quality of our solutions, but instead a poor choice
of comparative architectures. We therefore conducted an experiment specifically to test the benefit of domain-
specific architectures within the CPLD framework, attempting to control for other design considerations. Circuits
from one domain were implemented on architectures generated from different domains. The rightmost five columns

8

of Table 2 show the results of this test. The columns represent different generated domain-specific architectures.
For example, mapping the Combinational domain of circuits to an architecture created for the Sequential domain
results in an area-delay product 9.46x larger than if those circuits were mapped to the architecture generated for their
own domain. These results show that even controlling for the way architectures are designed, results are at least 2x
worse when the architecture is incorrectly optimized, and thus a mismatch in architecture to domain has a significant
cost.

Overall we see a significant benefit from domain-specific logic. The benefits found so far are 4.8x in area compared
to traditional FPGA tiles for Totem-RaPiD, and 5x to 11.8x in area-delay product as compared to commodity
CPLDs for Totem-CPLD.

3. How do you automatically create the architecture for a domain-specific FPGA?

Architecture generation for a domain-specific FPGA is somewhat akin to high-level synthesis for an ASIC design;
the tools must determine what resource mix and interconnect structure will best support the desired functionality. In
an ASIC flow we are generally seeking the best datapath to support a single, predefined computation. However, in
domain-specific FPGA generation, we must instead create a datapath capable of supporting multiple circuits, but
only a representative sample of the circuits may be available at the time of architecture creation. Thus we must not
only optimize based on the demands of the individual circuits, but also anticipate future designs.

In the Totem Project we have developed architecture generation techniques for four different situations:

1. Creation of a complete RaPiD-style datapath for a domain from scratch, including logic block selection and
placement, as well as interconnect generation. This was solved by placement and routing of multiple user
designs simultaneously within a simulated annealing framework. The resulting resource costs were directly
modeled in the annealing cost function [Compton01, Compton02, Compton03, Compton06].

2. Taking a predefined RaPiD datapath and identifying which resources can be eliminated for a given domain.
This was solved by first placing and routing circuits from the domain onto the existing datapath, and then
iterating though a “reduction” process. Subsequent placements and routings involved penalties on unused or
underused resources in the architecture, thus pushing individual circuit mappings to enhance commonality of
resource usage. At the end, any resources unused by all input circuits can be eliminated. This is our
“subtractive” system [Phillips04, Phillips04a].

3. Generating a PAL/PLA substrate for a given domain, including eliminating individual programmable
switchpoints in the AND and OR plane. This was solved via a simulated annealing framework performing
simultaneous placement of multiple user designs. The cost function was augmented to penalize resources that
are used by only a few benchmarks, and thus seek to increase the number of switchpoints that could be
eliminated [Holland04, Holland05].

4. Creating a complete CPLD from scratch, with an emphasis on selection of the best PLA to use as a logic block
(selection of inputs – product terms – outputs). This was solved by making independent mapping calls to the
PLAmap technology mapper [Chen01] and an area and delay estimator for the resulting CPLD. We then
evaluate each candidate architecture’s quality by aggregating the results across the full set of provided user
designs [Holland05, Holland05a].

Although the individual techniques vary between different architecture styles and implementation strategies, we
have found that the overall flow is fairly similar. To create an efficient architecture for multiple benchmarks, first
start with an algorithm that can create an architecture for a single benchmark. Then augment the algorithm with a
mechanism to aggregate the costs across multiple benchmarks, and use this to influence the mapping of each
benchmark in the domain.

Creation of an architecture for a single benchmark is relatively straightforward, though it varies by technology. For
example, the proper PAL or PLA to use for a circuit can easily be determined after logic synthesis and minimization.
In a CPLD the task is somewhat more complex since there are multiple variables to consider (inputs, product terms,

9

and outputs of the basic PLAs, plus number of PLA blocks and sparsity of the crossbar), but simple search
techniques involving multiple technology mapping calls can be performed [Holland05, Holland05a]. For a complete
RaPiD datapath, we must perform placement of the individual logic units, binding of computations from the user
designs to the physical units, and interconnect generation for the interconnect muxes, demuxes and wires
[Compton01, Compton02, Compton03, Compton06]. These techniques are similar to standard high-level synthesis
techniques [DeMicheli94]. However, as we will discuss in question 4 below, it is important that all created elements
be in a relatively regular and structured pattern, or else the resulting architecture will not support circuits other than
the original benchmarks.

Once a tool is available to generate an architecture for a single user design, handling multiple designs simply
requires aggregating information from architecture generation for each of those designs, and using that information
to guide subsequent steps in architecture generation. For example, one simple mechanism is to augment the base
tool such that it performs single-benchmark architecture generation on all of the benchmarks simultaneously. Then,
as a decision is made on any part of the architecture generation, the impact on all benchmarks can be measured, and
the proper decision made for the overall domain.

It may not always be possible to generate an architecture for multiple user designs simultaneously. Sometimes a
needed tool is available only as an executable, preventing modifications to the tool’s execution; PLAmap is an
example of this (scenario #4). In other situations, it may be difficult to change an algorithm to directly support
multiple mappings; this was an issue in the place & route tools for RaPiD (scenario #2). In both cases, this was
solved by a meta-generator that aggregated information from multiple runs of the single-circuit generator. For
example, to find out the best CPLD for multiple circuits, we can simply run PLAmap on each candidate architecture
individually and aggregate the results. For subtractive (scenario #2), we ran the placement and routing flow for each
user design separately. Then, we identified those resources that were used by relatively few user designs, since they
were the most likely candidates for elimination if the design mappings were coordinated. These resources were
penalized, and the placement and routing flow re-run. Through multiple iterations of this flow, the mappings of
individual circuits were coordinated across the entire domain.

4. How do you optimize for a domain, yet still keep flexibility to support new
circuits?

The simplest way to generate a new domain-specific architecture is to add exactly the resources required by a given
user design (Figure 5). Logic units of exactly the right operations can be placed where-ever needed, and point-to-
point wires put in place to hook together just those resources that must be connected for that design. In this way one
can get a reconfigurable structure very highly optimized to the circuits provided by the user; this is in fact the
premise behind our cASIC approach (introduced in question 2 above).

Unfortunately, an architecture so highly optimized to only a few circuits has very little chance of supporting any
other circuits. Even slight modifications or bug fixes on the circuits used to actually generate the architecture are
unlikely to fit. We refer to this as the “cASIC trap”. While a cASIC structure may be sufficient for some uses, and
(as shown above) can achieve higher densities than non-configurable standard cell designs, it removes most of the
benefits of reconfigurability.

Figure 5. Example of a cASIC interconnect. Empty circles are programmable connections, filled circles
are fixed connections.

10

Figure 6. Example of a flexible interconnect.

Instead of developing architecture generation algorithms that put down individual resources, we’ve found it much
more effective for the algorithms to instead select resources from a set of regular, flexible patterns. For example,
when developing a PLA as the basic logic unit for a CPLD, the tool is not allowed to select individual
programmable switches to add or delete; the resulting structure is unlikely to support other circuits efficiently.
Instead, the system can choose the number of inputs, outputs, and product terms for these basic elements. In this
way the logic elements are optimized to the needs of circuits from that domain, yet are likely to be reusable for other
circuits. Similarly, when creating the interconnect structure of a RaPiD device, our cASIC approach runs
independent wires from a given source to a given destination, and only has muxes and demuxes for resources that
must actually be connected in the input benchmarks (Figure 5). Our flexible algorithms instead deal in complete
tracks, with segmented wires of a uniform length and muxes and demuxes at every logic unit they traverse (Figure
6). Thus, the flexible tools can choose the mix of short and long tracks, and even choose the length of individual
tracks, but the resulting interconnect is still a flexible set of resources that can support many different types of
designs.

Note that there is a benefit to flexible interconnect generation strategies beyond supporting many wiring patterns. In
a cASIC approach it is hard to add extra “spare” resources to the structure to support future larger designs. Since
there are no regular patterns in the structures, one cannot request “more of the same”. However, if a domain
requires 10 tracks of length 16 wires with bus connectors, then it is easy to determine how to add 20% more
interconnect resources. This issue will be considered in more depth in question 6 below.

Creation of flexible structures does require methods for determining how to effectively space out these resources.
For example, when we have 10 tracks filled with length 16 wires, the staggering of breaks in the channel can have
an impact on the interconnect quality. However, in a regular channel, these types of problems are separable, and can
be investigated theoretically. In this specific case, we have developed an abstract model and both optimal (in
restricted cases) and heuristic algorithms to best place breaks in a segmented interconnect [Compton03,
Compton03a].

5. Do “flexible” architectures actually achieve their goal, and how do you
measure flexibility?

One relatively unique requirement of a domain-specific FPGA is that it be flexible: flexible in order to handle new
circuits not part of the initial specification, and flexible to support bug fixes and functionality upgrades. The
architecture generation and layout generation tools must have flexibility to automatically create FPGAs for many
different types of needs. Unfortunately, since flexibility is not a traditional requirement on ASIC systems, there is
no standard way to quantify flexibility.

If we had a large enough set of circuits from a user’s domain, testing flexibility would be simple. We would provide
the tools with a small sample of circuits, generate an architecture, and then see how many of the domain members fit
onto that architecture. However, we rarely have enough circuits for this, particularly since we want to understand
whether a domain-specific FPGA will work for our next project, and the next project is invariably larger and more
complex than what has been done before.

11

Our solution is synthetic circuit generation [Compton03, Compton04]. Techniques exist to take real circuits and
automatically generate similar new circuits [Darnauer96, Hutton98, Wilton01, Hutton02]. Essentially, they profile
the input circuit for fundamental properties such as logic mix, fanout, logic depth, etc., and use graph construction
techniques to create new circuits with similar, though not identical, properties. These generated circuits can then be
used as the large set of example circuits to evaluate a domain-specific FPGA system. Note that synthetic circuits do
raise one danger: since the circuits are synthetic, and only mimic those properties that the synthetic circuit
generation tool actually measures, it is possible that some unmeasured but critical feature of real circuits may be
lost. The solution is to generate architectures with the synthetic circuits during flexibility analysis, and to measure
with the real designs, so that we always determine what proportion of the real circuits can be supported by a
domain-specific FPGA.

This approach of using synthetic circuits to generate the FPGA, and real circuits to evaluate them, does provide an
additional opportunity. We can manipulate the settings for the synthetic benchmark creator to check the sensitivity
of the domain-specific FPGA generators to different parameter mismatches. For example, the SoC designer may be
concerned that future designs may have less locality, represented by a higher Rent exponent in their designs, and the
domain-specific FPGA may be sensitive to this. To test this dependence, the synthetic circuit generator can be fed
benchmark statistics with an artificially low Rent exponent. If architectures generated from these low Rent exponent
circuits can support the real user designs (with the correct Rent exponent), this gives confidence that the domain-
specific FPGAs can tolerate these alterations.

We have applied this flexibility measurement within our Totem-RaPiD effort [Compton03, Compton04] to evaluate
our AMO RaPiD domain-specific FPGAs, which are the most flexible architectures we generate. For single-circuit
examples, where we create a single synthetic benchmark based on one circuit, then map the real design to the
resulting domain-specific architecture, we have a 93.8% success rate. When this is boosted to a full domain of
circuits, with 5 synthetic benchmarks to control architecture generation, 99.7% of the real designs can be handled.

One might question whether this high success rate is due to real flexibility, or just an artifact of the testing
methodology. To answer this, consider our GH (Greedy Histogram) technique, which was developed at the same
time as AMO [Compton02, Compton03]. AMO evenly spread the logic units throughout the architecture, so that
each region had the same proportion of the ALUs, multipliers, etc; GH was allowed to adjust the logic unit
placement to better match the input benchmarks. AMO used tracks with only powers-of-2 lengths, and smoothly
spaced segment breaks; GH could pick arbitrary track lengths and segment breaks based on the demands of the
benchmarks. Thus, GH was a somewhat more cASIC-style version of AMO, using less regular interconnects and
logic block placements to more closely match a given domain. For single-circuit tests only 18.5% of circuits could
be accommodated by GH-produced architectures, and for full domain testing 91.6% of circuits can be supported.
Given that the GH approach only achieves approximately a 1% area improvement over AMO, it is clear that the
more regular architecture construction approach is superior. It is also clear that more regular structures provide
much higher flexibility.

Note that one might consider a 99.7% success rate insufficient, since if a computation cannot be mapped to the
device it is useless. However, these experiments are done without considering resynthesis. In a real domain-
specific FPGA, just like a normal commodity FPGA, we can expect some initial circuit designs to fail to map. The
user must then restructure the design somewhat, perhaps by applying time-multiplexing, to allow it to map to the
device. Alternatively, as discussed in question 6 below, we can add resources to boost the range of circuits that can
be supported on the domain-specific FPGA.

6. What is the best way to spend extra resources to ensure future designs will
fit?

During the generation of a domain-specific FPGA, our goal is to create an architecture that best fits the user’s
domain, as represented by a set of example circuits. Architecture generation then creates as efficient an architecture
as possible for that domain. However, we can expect that the user will want to map other designs to this substrate,
and these new designs will likely require more logic, routing, or other resources. Thus, a common request from the
SoC designer would be to add some slack to the architecture, spending extra silicon area to maximize the likelihood
that future designs will also fit this substrate. However, the best way to use these extra resources is unclear.

12

The answer for most standard methods for including FPGAs into SoC is “more of the same”. The FPGA IP is
provided as a fixed tile, comprising both logic and routing, and the designer can simply add extra tiles in order to fill
up the area to be devoted to reconfigurable logic. As such, we are assuming that the logic block complexity, ratio of
interconnect to logic blocks, and connectivity pattern of the interconnect should not be varied as we include larger
and larger arrays, and hope to support even wider ranges of circuits from a domain. It is not obvious that this is the
best approach. For example, for most domains as circuits get larger their interconnect demands change, and
emphasize more long-distance communication. Thus, when the SoC designer has extra resources to spend, it is
unclear how to best spend them.

In our Totem-CPLD effort we have been able to explore this question. Our goal was to determine the most area-
efficient strategy to add spare resources to allow future designs to fit. To create tests, we took each domain from our
benchmark suite, removed one or more circuits from the domain, and determined whether the architecture generated
for the reduced domain changed from the original. We discovered 49 cases where the base architecture was
sensitive to a specific circuit, and used these for further testing. We measured, for a given resource addition
strategy, how large an area increase was required to get a given circuit to fit.

0

5

10

15

20

25

30

35

40

45

50

1.00 2.00 3.00

Normalized Area

D
om

ai
ns

 S
up

po
rt

ed

#PLAs
c*(in-pt-out)
#PLAinputs
#ProductTerms
#PLAoutputs

Additional Resources

Figure 7. Area increase vs. additional domain circuits supported, given different strategies for using
extra resources [Holland05].

The results of this investigation are shown in Figure 7. The horizontal axis is area increase, and the vertical is the
number of troublesome mappings that work at the given area increase. Note that the curve is monotonically
increasing, since once we have enough resources to fit a given design, it will still fit as we add even more resources.
Only sensitive scenarios are plotted here – out of the single-circuit removal scenarios tested, 62% of them created
the same architecture when that circuit was removed. The scenarios tested were:

1. #PLA: Increase the number of PLAs in the CPLD. Since the CPLD’s routing structure is a sparse crossbar, the
interconnect resources scale up proportionally with this change.

2. c*(in-pt-out): Increase the size of the PLAs, in terms of inputs, product terms, and outputs, by a multiplicative
factor. Thus we might consider logic blocks with twice as many inputs, outputs, and product terms, and
therefore can handle a significantly larger portion of the computation.

13

3. #PLAinputs: Increase the number of inputs to the PLAs.
4. #productTerms: Increase the number of product terms in the PLAs, thus allowing more complex functions to be

implemented.
5. #PLAoutputs: Increase the number of outputs from the PLAs.

There are a couple of striking features in the graph in Figure 7. First, some strategies are doomed to failure, since
they will never be able to support some computations. For example, when we just add product terms to the PLAs,
we will never be able to support functions with wider fan-ins than the base set of circuits, since the number of inputs
and number of PLAs doesn’t change. This is shown by the #productTerms curve in the graph reaching a plateau.
Similar reasoning explains why the #PLAinputs and #PLAoutputs curves also eventually stop supporting new
circuits.

Increasing the number of logic units – #PLA – or the capacity of each logic unit – c*(in-pt-out) – will each
eventually support any design, once enough capacity is available. However, it is clear that simply adding more PLA
blocks is superior than increasing the logic block size, since the #PLAs curve generally dominates the c*(in-pt-out)
curve. Hybrid techniques, which scale both the logic block capacity and number of logic blocks simultaneously,
also were not as efficient as just increasing the number of logic blocks [Holland05]. Thus, the correct answer does
seem to be “more of the same” – we can get significant benefits in the quality of implementation by optimizing logic
block and interconnect structures to a domain (question 2 above), but to add capacity in the most efficient manner
you simply add more of those same resources.

Note that this analysis held true for Totem-RaPiD as well [Compton03, Compton04] – if we used a good-quality
architecture generator such as AMO, a new design from the domain would almost always fit if the architecture had
enough of each type of logic unit (recall that RaPiD has multiple functional units, including ALUs, Multipliers, and
RAM, and thus you’d need enough of each class). If you do not have enough resources, a strategy such as time-
multiplexing or other resynthesis would be required to support the computation.

There was one dimension other than number of logic blocks that was found to be important in Totem-CPLD: the
sparseness of the crossbars (or hence the flexibility of the interconnect). Our architecture generators reduce the
number of switches in the crossbar until the base circuits just barely mapped to the array, thus saving area and delay
in the crossbar. However, this may not be the best answer for supporting future circuits.

14

0

5

10

15

20

25

30

35

40

45

50

1.00 2.00 3.00

Normalized Area

D
om

ai
ns

 S
up

po
rt

ed

+0%
+5%
+10%
+20%
+50%

Switch Density Increase Over Minimum

Figure 8. Area increase vs. additional domain circuits supported, by increasing the number of PLAs,
given different amounts of increased switch densities in the sparse crossbars. [Holland05].

Figure 8 is similar to the graph of Figure 7, showing troublesome circuits mapped vs. the area increase in the
architecture. All curves use the strategy of simply adding more functional units (#PLA from Figure 7), but each
curve considers a different base crossbar richness. Specifically, the +0% curve uses the minimum number of
switches in the crossbars, while +N% increases the switches per crossbar by N% over the minimum. As can be
seen, the +0% and +5% curves are comparable. While the +0% curve performs somewhat better than the +5% line
in some cases, in others it is even more significantly worse than the +5% line. Although the minimum switch
density is sufficient for the base circuits, it can be too brittle to effectively handle some other designs. Note that to
get +0% to work at all for some circuits we have to depopulate some of the PLAs, telling the technology mapper to
under-pack the PLAs to allow additional flexibility in the router [Holland05]. The curve for +5% is almost always
better than all other curves that add capacity, and is significantly less fragile (and thus often more effective) than the
+0% curve. Thus, we believe that adding a small amount of additional flexibility to the interconnect structures is
worthwhile, and all Totem-CPLD tests in Figure 7 use +5%. Although we did not find a similar effect in Totem-
RaPiD, we believe this is actually inherent in our flexible tool flows. Specifically, our AMO architecture generator
actually performs routing during architecture generation, though with an inferior (but fast) left-edge-algorithm
heuristic [Compton02, Compton03]. The more powerful Pathfinder algorithm performs the final mapping of circuits
to the generated architecture. Thus, we suspect that picking resources to meet the needs of a weak router, yet
mapping designs with a high-quality router, may automatically add a sufficient margin of extra flexibility into the
interconnect.

7. Do architectures need to support the worst-case resource demands across a
domain?

One difficult problem in creating a domain-specific FPGA is balancing the resource requirements of different user
designs, particularly when we consider the variable domains possible within an SoC. That is, if the “domain”
consists of very different circuits with very different computation styles, the types and quantities of resources
required can vary significantly from circuit to circuit. If the reconfigurable logic must be manufactured with the

15

worst-case resource demands across all circuits, this can yield an unacceptable architecture; unacceptably large,
slow, and power-hungry.

In terms of logic functionality, it is often possible to rein in excessive resource requirements from any one circuit via
logic resynthesis, often involving time-multiplexing. For example, a highly parallel implementation of the Frog
encryption algorithm can produce a new value every two cycles, but requires 64 RAM blocks. Reducing the
throughput to a value every 8 cycles reduces the memory requirements to 16 RAM blocks, and a value every 32
cycles requires 8 RAM blocks. By carefully considering different implementations of each design, and balancing
resource requirements across the entire domain, we can create efficient architectures [Eguro02, Eguro03, Eguro05a].

Unfortunately, a similar approach may not be possible for the interconnect resources. For example, consider a
domain of four circuits that require an interconnect channel width of 8, 9, 9, and 16 respectively. We might want to
choose a consensus channel width of perhaps 9. For the interconnect-heavy circuit, we might hope to spread the
circuit across a much larger architecture, thus spreading out the interconnect demands and reducing the per-channel
requirements. However, such spreading is not generally considered in existing mapping tools [Betz97], which will
ignore limited interconnect resources and instead tightly cluster the circuit, resulting in a routing failure [Eguro04].
While there are some mapping algorithms that can support congestion-aware placement and routing [Sharma01,
Eguro05, Sharma05, Sharma05a], it is important to realize that the CAD tool flow that targets the domain-specific
arrays has assumptions that may limit how well resource demands can be reduced or balanced.

8. What role do fixed functional units play in a domain-specific architecture?

One of the attractions of domain-specific FPGAs is the ability to include complex fixed-function units appropriate to
the specific domain. This can radically improve the area, power, and performance of those portions of the
computation that map to these units. In a sense this is the concept behind the original RaPiD architecture, utilizing
only ALUs, multipliers, and memories to implement complete DSP applications.

To investigate the roles of complex functional units in domain-specific FPGAs, we developed RaPiD-AES
[Eguro02], a RaPiD-style architecture with logic units optimized to private-key encryption. We began by carefully
examining all of the 15 original candidates for the Advanced Encryption Standard competition (AES) [NIST02], to
identify the types of operations they perform. We then grouped the operations together into basic functional units
optimized to compute exactly these functions; these functional units would then be the basic units within the RaPiD-
AES structure. The units we created were:

• Multiplexer: 32-bit, 2:1 muxes for computation and time-multiplexing support.
• ALU: Addition, subtraction, XOR, AND, OR, NOT, etc.
• Rotate/Shift Unit: 32-bit variable shifter with left/right rotate/logical shift/arithmetic shift.
• Permutation Unit: 32x32:1 statically controlled muxes, providing arbitrary connection from input to output

bits.
• RAM: 256 byte memory addressable as eight 4 to 4 lookup tables (each with 4 pages of memory), eight 6 to 4

lookup tables, or one 8 to 8 lookup table.
• 32-bit Multiplier: 32-bit integer multiplication with 64-bit output.
• SIMD Multiplier: 4x8-bit modulus 256 integer multiplications or 4x8-bit Galois Field multiplications.

With these fixed functional units, we were able to efficiently implement all of the computations found in the entire
AES domain, including the original circuits as well as circuit modifications made as the competition progressed.
Unfortunately, RaPiD-AES was a complete failure. After VLSI layout of all of the units, creation of a new compiler
flow to target the device, and implementation of all AES algorithms in RaPiD-C, the domain-specific results were
significantly worse in area-delay product compared to Verilog implementations we mapped to standard Xilinx
FPGAs. Although some of this was due to the relative skill differences in layout between a world-class FPGA
company and a bunch of undergraduate and graduate students, we believe much of the penalty is due to inherent
challenges with fixed functional units within reprogrammable devices:

• Although a fixed functional unit may be significantly more efficient than generic FPGA units such as look-up
tables (LUTs) for a given computation, overall they may be a loss. For example, if our shifter unit was 10x
more efficient than LUTs for a rotation, but were less than 10% utilized across the domain of circuits, they

16

result in a net area loss. Note that such low utilizations are due not just to some circuits not using the resource
at all, but also from circuits that only use a small portion of the provided fixed functional units.

• Even when fixed functional units are used, their placement in the architecture imposes a penalty. Specifically,
an architecture generator will generally disperse these units throughout the architecture to support many
different usage patterns. However, individual units will likely have more clustered unit usage dictated by the
overall computation. Thus, we can expect significantly higher interconnect usage to route signals to where
those units actually appear in the architecture, costing both area and delay. Also, logic that doesn’t use the fixed
functional units will also have increased routing costs since their signals must be routed past those unused units.

Both of these problems can be summed up in a single word: fragmentation. Fixed functional units break up the
architecture into areas of differing functionalities, and the resulting fragmentation of their usage can impose
significant area and performance penalties.

While fragmentation doomed our RaPiD-AES efforts, we still believe there is a role for fixed functional units in
domain-specific FPGAs; the best indication of this is the increasing inclusion of such units into commodity FPGAs.
Commercial architectures now have carry chains, RAM blocks, multipliers, and even complete microprocessors
embedded into their fabric. Commodity FPGAs also point the way towards how to use these resources.
Specifically, instead of attempting to support an entire computation with a set of fixed functional units, we instead
start with an overall flexible FPGA fabric and then add fixed functions as they prove beneficial. Those that provide
a definite advantage can be included, while other computations can remain in LUTs, thus avoiding unnecessary
fragmentation of resources.

With this methodology of “flexible-first”, even for beneficial units we may add a much smaller quantity of each unit
than individual benchmarks may desire. For example, one design may want 90 multipliers within the fabric.
However, if most other domain members need only 10 multipliers each, the most efficient solution is likely to be to
only include those 10 multipliers, and map the remaining 80 multipliers from the worst-case design into the LUTs of
the programmable fabric. This concept was not available to us within our RaPiD-AES effort, since there was no
fully flexible unit as a fallback. Although we were able to reduce worst-case resource demands somewhat by time-
multiplexing (discussed in question 7 above), this still was not sufficient.

9. How do you create the layout for a domain-specific FPGA?

Once architecture generation has completed, we must somehow create an implementation of that architecture. At
this point, the reconfigurable logic is expressed as a circuit, and can be implemented like any other. The only
difference from a normal design is that this circuit contains programming bits to control various features in the array,
and these programming bits will be fabricated along with the rest of the design. Thus, the circuit remains
reprogrammable, and once fabricated can be configured to implement whatever domain members are desired.

The simplest method for layout generation is to feed the architecture description directly into a standard cell flow.
This technique will be able to support any architecture desired, and is compatible with an overall SoC flow. Note
that this can be important, since if the rest of the design is in standard cells, the inclusion of another implementation
style may be counter-productive. However, standard cell systems can have difficulty implementing FPGA
hardware. Specifically, to a standard cell system an FPGA appears to be a huge set of combinational cycles, since
there is generally an unregistered path between each gate of the design, including a path back to itself. Standard cell
systems can have significant problems with combinational cycles, particularly in connection with timing
optimization. One solution is to create directional FPGAs, architectures without combinational cycles [Kafafi03,
Yan03]. Alternatively, a custom standard cell system can be developed to implement FPGAs [Padalia03, Kuon05];
this can also take advantage of FPGA-specific optimizations based on the regularity of FPGA tiles, and the
interchangeability of programming bits.

Better implementations than basic standard cells are possible. An FPGA is composed of relatively few basic
elements: multiplexers, programming bits, tristate drivers, basic switches, and D-flip-flops. Thus, it pays to have as
optimized an implementation of these basic blocks as possible. We have found [Phillips01, Phillips02] that
significant benefits can be obtained by adding hand-crafted standard cells to a standard cell library to support the

17

FPGA’s exact needs. For example, in implementing RaPiD architectures the addition of five FPGA-specific
standard cells yields an area only 0.83x the size of a version using normal standard cells.

Driver

B
uf

PTerm

Reg

Crossbar

R
eg2X

bar W
ire

Xbar2Drive Wire

PTerm

Driver RegXbar2Drive Wire

B
uf

PTermPTerm

Driver

B
uf

PTerm

Reg

Crossbar

R
eg2X

bar W
ire

Xbar2Drive Wire

PTerm

Driver RegXbar2Drive Wire

B
uf

PTermPTerm

Driver

B
uf

PTerm

Reg

Crossbar

R
eg2X

bar W
ire

Xbar2Drive Wire

PTerm

Driver RegXbar2Drive Wire

B
uf

PTermPTerm

Driver

B
uf

PTerm

Reg

Crossbar

R
eg2X

bar W
ire

Xbar2Drive Wire

PTerm

Driver RegXbar2Drive Wire

B
uf

PTermPTerm

Figure 9. Floorplan of CPLD circuit generator structures (left) and the resulting layout (right)
[Holland05].

We can not only custom develop FPGA-specific standard cells, but can also automatically create full-custom
layouts. Consider a structure such as RaPiD, where complex – but regular – functional units are combined together
to create an entire programmable device. In this case, we can develop a circuit generator to instantiate each
individual element [Phillips04, Phillips05] parameterized based on possible architecture generator optimizations,
similar to a datapath compiler. Then, by abutting these basic elements together we can create a complete
reconfigurable array. Similarly, our circuit generator for CPLDs [Holland05, Holland05a] creates an overall design
by abutting simple, parameterized elements (Figure 9). Note that circuit generators restrict the optimizations
available to the architecture generator, since each hardware unit’s generator will have some limitations on the types
of elements it will create. For example, an ALU generator might be parameterized to different bit-widths, but might
not be able to implement a hard-coded incrementer.

G
PR

R
A

M

R
A

M

G
PR

M
U

LT

G
PR

A
LU

A
LU

G
PR

G
PR

R
A

M

A
LU

G
PR

G
PR

R
A

M

R
A

M

G
PR

M
U

LT

G
PR

A
LU

A
LU

G
PR

G
PR

R
A

M

A
LU

G
PR

G
PR

R
A

M

G
PR

M
U

LT

A
LU

G
PR

G
PR

R
A

M

G
PR

G
PR

R
A

M

G
PR

M
U

LT

A
LU

G
PR

G
PR

R
A

M

G
PR

G
PR

R
A

M

G
PR

M
U

LT

A
LU

G
PR

G
PR

R
A

M

G
PR

G
PR

R
A

M

G
PR

M
U

LT

A
LU

G
PR

G
PR

R
A

M

G
PR

Figure 10. Abstract representation of template reduction. The initial architecture (left) is reduced by
eliminating unneeded resources (center), and then compacted (right).

A final option is to leverage premade, full-custom FPGAs, yet still optimize the architecture to a specific domain. In
template reduction [Phillips04, Phillips04a], architecture generation is restricted to use a common template that
represents a superset of all possible allowed resources. The architecture generator selects a subset of those resources
to form a domain-specific architecture. A highly optimized layout for the common template can be used as a
starting point for layout generation, which simply removes whatever resources are not used by the generated
architecture (Figure 10). This directly improves performance and power, since capacitance and leakage currents are
reduced, and layout compaction can improve the layout’s area. While this technique benefits from an initial full-

18

custom layout, the downside is that architecture generation can never add new styles of resources. Also, the
template reduction operations can be complex to implement and are often tied to a specific fabrication process.

0

0.5

1

1.5

2

2.5

3

1520253035404550556065

Percent Utilization

N
or

m
al

iz
ed

 A
re

a

Full-Custom RaPiD

Standard Cells

FPGA-Specific Cells

Circuit Generators

Template Reduction

Figure 11. Area comparison of different layout generation techniques [Phillips04].

In order to compare all four layout generation techniques (Standard Cells, Standard Cells with FPGA-specific cells,
Circuit Generators, and Template Reduction) we implemented all four techniques within a RaPiD flow [Phillips04].
Figure 11 shows an area comparison of these techniques. The vertical axis is area, normalized to the size of a full-
custom RaPiD architecture implementation of that benchmark. The horizontal axis sorts the benchmarks based on
utilization of the RaPiD architecture – designs that use relatively few of the resources provided by the standard
architecture are likely to benefit the most from automatically customized domain-specific arrays. The graph
demonstrates several key issues. First, the standard cell flow is 2.5x worse than the full-custom, fixed RaPiD
architecture for designs that use most of RaPiD’s resources, but as the designs deviate more significantly the
standard cell flows approach or even surpass full-custom, though fixed, designs. Second, the circuit generator and
template reduction flows achieve roughly the same results, providing approximately a factor of 2 improvement over
full-custom, fixed reconfigurable architectures.

10. When can you apply full-custom layout techniques instead of just standard
cells?

As discussed in 9 above, significant quality improvements are possible if we utilize a more aggressive layout
approach than just vanilla standard cells. However, using such an approach may not be appropriate in all
circumstances. For example, consider the advice to implement custom FPGA-specific standard cells. Although it
provides a modest area improvement, each standard cell created is likely to be specific to a given fabrication
process, since design rules vary from process to process. Thus, we either create a single set of additional standard
cells, locking in the reconfigurable logic to a single process, or we must spend significant effort creating new
libraries for most/all technologies, since commercial libraries for a new technology likely do not have the “right”
cells.

For template reduction and circuit generators, there are greater concerns than just locking in to a given fabrication
process. By using these technologies we restrict the type of optimizations that are useful during architecture
generation. For example, in a circuit generator approach each generator makes assumptions on the overall structure,
and set of possible optimizations, in order to create an efficient implementation. The generator for an ALU within a

19

RaPiD structure may assume that the I/O connections come from the left and right, and the height of all units in the
architecture will be the same in order to “pitch-match” these connections. Thus, an architecture generator
transforming an ALU to reduce its height may simply not be supported. Template reduction may allow the
architecture generator to remove subcomponents of the ALU, since individual transistors and connections can be
deleted in a straightforward manner. However, since the neighboring units may not be reduced in the same way,
compaction will be unable to reduce the overall area because of cross-constraints.

Driver

B
uf

PTerm

Reg

Crossbar
R

eg2X
bar W

ire

Xbar2Drive Wire

PTerm

Driver RegXbar2Drive Wire

B
uf

PTermPTerm

Driver
B

uf
PTerm

Reg

Crossbar

R
eg2X

bar W
ire

Xbar2Drive Wire

PTerm

Driver RegXbar2Drive Wire

B
uf

PTermPTerm

inputs out
(inputs+outputs+c)*PLAs/2

pt
er

m
s

(o
ut

pu
ts

*P
LA

s)
+C

hi
p_

in
pu

ts

Driver

B
uf

PTerm

Reg

Crossbar
R

eg2X
bar W

ire

Xbar2Drive Wire

PTerm

Driver RegXbar2Drive Wire

B
uf

PTermPTerm

Driver
B

uf
PTerm

Reg

Crossbar

R
eg2X

bar W
ire

Xbar2Drive Wire

PTerm

Driver RegXbar2Drive Wire

B
uf

PTermPTerm

Driver

B
uf

PTerm

Reg

Crossbar
R

eg2X
bar W

ire

Xbar2Drive Wire

PTerm

Driver RegXbar2Drive Wire

B
uf

PTermPTerm

Driver
B

uf
PTerm

Reg

Crossbar

R
eg2X

bar W
ire

Xbar2Drive Wire

PTerm

Driver RegXbar2Drive Wire

B
uf

PTermPTerm

inputs out
(inputs+outputs+c)*PLAs/2

pt
er

m
s

(o
ut

pu
ts

*P
LA

s)
+C

hi
p_

in
pu

ts

Figure 12. CPLD layout augmented with the scaling dimensions. Some constants are not shown on the
dimensions for simplicity.

We have found that an automatically generated reconfigurable system’s full-custom layout generally has a set of
“scaling dimensions”, features of a layout that scale with properties. For example, the height of a RaPiD
architecture is dictated by the bitwidth of the computations, and the width based on the set of operations included.
For a CPLD, the component areas are dependent on the number of PLA inputs, outputs, and product terms, as well
as the number of PLAs in the CPLD. This is shown in Figure 12. An architecture generator can alter these features
almost at will and the layout will adjust automatically. However, if the architecture generator makes an optimization
that is not fully aligned with a “scaling dimension” the layout generator may not be able to efficiently support that
transformation. For example, in the CPLD if we choose to take one PLA and decrease its number of product terms
by half, there will be no improvement in the layout area, since the height of the other PLAs will still dictate the
overall layout dimensions. This change may improve performance or power, but even these are limited by the
inability to restructure the layout.

20

Figure 13. Example of a PLA with switches eliminated [Holland04, Holland05].

Before we realized the importance of scaling dimensions, we developed a PAL and PLA generator that reduces the
number of connections in the array by placing product terms with similar connection patterns from different circuits
into the same position [Holland04, Holland05]. This system was able to eliminate 66% to 74% of the programmable
connections from a PAL or PLA, with a delay improvement of 16% to 31%. Unfortunately, there were no area
improvements from this technique, for reasons apparent in the resulting layout shown in Figure 13. Notice that
although the central arrays are relatively lightly populated, there is little a compaction algorithm can actually do with
this layout. For example, through either direct adjacencies or by touching corners, a path of programmable elements
can be found through the entire width and height of the PLA. Thus, when we invoked a compactor on this array, no
benefit was found. For a system such as this, a standard cell implementation might be preferred, since with the area
overhead of perhaps 2x (assuming PLA-specific cells), but an elimination of almost 75% of the logic elements, a net
area benefit will likely be achieved.

Note that if the layout generator is specifically designed to minimize cross-constraints, some irregularities in layouts
can be supported. For example, to support sparse crossbars as interconnect matrixes within a CPLD, we knew that
perhaps only 20% of the crossbar positions would be populated. Thus, our basic crossbar switchpoint was designed
to easily slide vertically in the array, with vertical routing to connect the switchpoint to the appropriate horizontal
wire, and with very tight packing of horizontal wires. However, these alterations may come at a price; reducing
cross-constraints may require greater area or circuit delay.

The main conclusion is that if we expect to use a full-custom layout generator such as template reduction or circuit
generators, the architecture generator and layout generator tools must be coupled. The layout generator must be
designed to support the optimizations included in the architecture generator, and the architecture generator can only
create architectures that the layout generator can efficiently implement. This is of particular concern in 2D
architectures such as standard island-style FPGAs; in an island-style FPGA the size of a routing channel must be
fixed for the channel running the entire length or width of the array, and the switchboxes (locations where vertical
and horizontal tracks are cross-connected) may impose a coupling between the sizes of the vertical and horizontal

21

channels. Thus, the types of optimizations available may be significantly restricted. In RaPiD and in CPLDs, there
are many more scaling dimensions available, since many of the features are independent.

11. How do you provide a CAD suite for mapping user designs onto automatically
generated domain-specific FPGAs?

A domain-specific reconfigurable system is useless unless there is a corresponding toolsuite to map user designs
onto this substrate. While an architecture generator will generally map the initial user designs to the architecture as
it is created, the SoC user will inevitably want to map new designs to the array, either to handle new functionality, or
for bug fixes on the initial circuits.

Several steps in the mapping process for domain-specific logic are easy to support. For synthesis and technology
mapping, the logic inside a domain-specific device is usually chosen from a set of standard styles of units, units that
are supported by existing tools. Thus, our tool to generate a customized RaPiD will choose the number of ALUs
and Multipliers, but will not alter the type of units included. For CPLDs, the system can choose the number of
inputs, outputs, and product terms for the PLAs. However, existing mapping tools for PLAs such as PLAmap
[Chen01] already allow the mapping to be parameterized based on these factors.

Routing is also easy to support. The main routing algorithm for FPGAs, Pathfinder [McMurchie95], is already
architecture-adaptive; a new architecture is modeled by a routing graph and given to Pathfinder, which automatically
maps to this interconnect structure.

Placement is much harder. Placement algorithms are generally tied directly to the underlying FPGA architecture by
the tool’s interconnect estimator used to calculate the placement cost. Specifically, placement is really the process
of assigning logic computations to FPGA logic blocks in order to improve the resulting routing. Most current
placement algorithms, including the prevalent academic placer in VPR [Betz97], abstract the routing problem into a
fast estimator, which makes assumptions on the features of the interconnect. If the generated architecture matches
these assumptions, the placement algorithm will still work. Thus, the VPR placer can be used for island-style
architectures with abundant routing resources and homogeneous routing channels. For RaPiD, our placer can handle
any resource mix and channel capacity (including highly congested channels), as long as the channel width is
constant across the array [Sharma01].

Unfortunately, many architecture modifications will not conform to the assumptions of an existing architecture-
dependent placer. For example, as discussed in question 7 above, we might develop an island-style architecture with
a channel width dictated by the typical, not worst-case, requirement across the circuits of the domain. This would
boost the overall system quality. However, this violates the assumptions in VPR, which cannot handle congested
channels.

A solution we have explored is to eliminate heuristic routing estimates. Specifically, if the goal of placement is to
facilitate a high-quality routing, then the router itself can be used to estimate routeability. Since Pathfinder is
architecture-adaptive, we can make calls to Pathfinder during placement to estimate the quality of a given
placement. Note that complete routings are not necessary for each placement, since a placer normally makes a
series of small perturbations to an existing placement, and thus requires only slight perturbations to the routing as
well. The runtime penalties for this technique are significant, but since we expect these domain-specific
reconfigurable systems to only occupy a small portion of a System-on-a-Chip, this does help limit the size (and thus
runtime) of the placement approach. We have developed an architecture-adaptive placer called Independence
[Eguro05, Sharma05, Sharma05a, Sharma05b], which achieves similar or better results that architecture-specific
tools on a wide range of architecture types, including VPR/island-style, tree-based HSRA [DeHon99], and RaPiD.

Future Work

In our efforts since 1999 we have been able to answer many of the questions surrounding automatic generation of
domain-specific FPGAs. However, there is still much left to do. Perhaps the biggest open question is how these
results track to different FPGA styles. We chose to focus on RaPiD because of local expertise and collaboration
with Carl Ebeling’s group, the simplifications possible from using a 1D structure, and the use of complex functional

22

units. This meant many questions could be quickly answered within the RaPiD structure. Similarly, our CPLD
work was motivated both by the ability to explore an architecture that is quite different than RaPiD, but is still very
flexible, and has an interesting interconnection structure. Also, the simplicity of the mapping flow to PLAs/PALs
meant that interactions with synthesis could be considered.

However, the major growth area in reconfigurable logic is in island-style, 2D architectures, and it is likely that such
architectures will form a significant portion of the commercial market for reconfigurable logic in SoC. Whether
island-style architectures will exhibit the same characteristics as the ones studied here is a major open question. We
believe they will, except that the layout constraints of scaling dimensions (question 10 above) will have an even
greater restriction on architecture generators that target aggressive layout styles such as template reduction and
circuit generators.

A second major open question is logic synthesis support. While synthesis interactions were a major consideration in
Totem-CPLD, resynthesis of troublesome designs requires careful consideration. At times, one circuit in a domain
will have features disproportionate to the other circuits within the domain. If this circuit is used in architecture
generation, it can distort the resulting architecture. If the circuit is not used in architecture generation, it may not fit
on the previously-generated architecture. For both of these cases, the circuit should be resynthesized to limit the
impact of its excessive resource requirements. For example, a tool to automatically time-multiplex designs would
be invaluable. Our efforts to time-multiplex encryption circuits by hand for RaPiD-AES clearly demonstrated the
advantage of (and need for) this approach.

A final issue is the need for accurate quality metrics for domain-specific FPGA creation systems. We made
extensive investigations into area and flexibility, and some considerations of performance. However, studies of the
power implications of these systems will be very useful. While we believe the power improvements will track
somewhere between the area and performance improvements, this should still be explored. Also, our performance
studies have been somewhat simplistic. Although we alter circuit structures in ways that decrease capacitance, and
thus improve performance, we do not currently have mechanisms to change transistor sizings in response to these
changes.

Conclusions

It seems clear that SoC design flows will by necessity incorporate reconfigurable logic.. While the continuing
increase of fabrication costs decreases the number of new ASIC starts, it also demands that each ASIC actually
produced be capable of being used in a large number of systems. Reconfigurable logic provides a mechanism to
adjust the hardware to support a wide range of computations with a single chip, as well as a way to reduce the
likelihood of fatal design errors. These features make reconfigurable logic a natural choice for SoC design

While current commercial ventures are seeking to exploit this opportunity by deploying premade IP tiles that can be
tiled to form NxM arrays, they miss a huge opportunity: customizing the reconfigurable logic to the specific needs
of the target SoC. As we have demonstrated, this optimization yields 5x improvements in area and up to 11x in
area-delay product compared to standard reconfigurable systems. In some cases these implementations even rival
those of fixed ASIC solutions. The creation of these architectures, layouts, and CAD tools are quite manageable,
though care must be taken in the architecture/layout coupling. Architectures must support efficient routing
estimators or be prepared to use significantly slower placement approaches. Finally, by using regular, flexible
structures and carefully adding spare resources, these systems exhibit excellent flexibility to support new or
upgraded circuits developed after chip fabrication.

Acknowledgements
This work was supported by grants from Altera, Inc., DARPA, Motorola, Inc., NASA, and NSF, as well as software
donations from Altera, Inc. and Xilinx, Inc. Katherine Compton and Mark Holland were supported by NSF
Fellowships, and Shawn Phillips was supported by an MIT Lincoln Laboratory Fellowship. Scott Hauck was
supported in part by an NSF CAREER Award and a Sloan Research Fellowship. The Totem project benefited by
the contributions of numerous other students, including especially Kim Motonaga and Todd Owen.

23

The Totem project was also helped by many people outside of our group. Thanks to the RaPiD team in the Dept. of
CSE at the University of Washington, especially Carl Ebeling, Chris Fisher, and Mike Scott, for help in technologies
supporting Totem-RaPiD. Thanks also to Mike Hutton and Swati Pathak at Altera, and Guy Lemieux and Steve
Wilton at U.B.C. Finally, Larry McMurchie helped in innumerable ways, and it is clear we would not have
accomplished most of this effort without his efforts.

References
[Actel04] Actel Corporation, “VariCore™ Embedded Programmability - Flexible by Design”,

<http://varicore.actel.com/cgi-bin/varicore.cgi?page=overview> (30 January 2004).

[Betz97] 2. V. Betz and J. Rose, “VPR: A New Packing, Placement and Routing Tool for FPGA Research”,
7th International Workshop on Field-Programmable Logic and Applications, pp 213-222, 1997.

[Biehl93] G. Biehl, “Overview of Complex Array-Based PLDs”, in H. Grünbacher, R. W. Hartenstein, Eds.,
Lecture Notes in Computer Science 705 - Field-Programmable Gate Arrays: Architectures and
Tools for Rapid Prototyping, Berlin: Springer-Verlag, pp. 1-10, 1993.

[Chen01] D. Chen, J. Cong, M. Ercegovac, Z. Huang, “Performance-Driven Mapping for CPLD
Architectures”, ACM/SIGDA Symposium on Field-Programmable Gate Arrays, 2001, pp. 39-47.

[Compton01] K. Compton, S. Hauck, “Totem: Custom Reconfigurable Array Generation”, IEEE Symposium on
FPGAs for Custom Computing Machines, 2001.

[Compton02] K. Compton, A. Sharma, S. Phillips, S. Hauck, “Flexible Routing Architecture Generation for
Domain-Specific Reconfigurable Subsystems”, International Conference on Field Programmable
Logic and Applications, pp. 59-68, 2002.

[Compton03] K. Compton, Architecture Generation of Customized Reconfigurable Hardware, Ph.D. Thesis,
Northwestern University, Dept. of ECE, 2003.

[Compton03a] K. Compton, S. Hauck, “Track Placement: Orchestrating Routing Structures to Maximize
Routability”, International Conference on Field Programmable Logic and Applications, 2003.

[Compton04] K. Compton, S. Hauck, “Flexibility Measurement of Domain-Specific Reconfigurable Hardware”,
ACM/SIGDA Symposium on Field-Programmable Gate Arrays, pp. 155-161, 2004.

[Compton06] K. Compton, S. Hauck, "Automatic Design of Configurable ASICs”, submitted to IEEE
Transactions on VLSI Systems.

[Cronquist99] D. C. Cronquist, P. Franklin, C. Fisher, M. Figueroa, C. Ebeling, “Architecture Design of
Reconfigurable Pipelined Datapaths”, Twentieth Anniversary Conference on Advanced Re-search
in VLSI, 1999.

[Darnauer96] J. Darnauer, W.W.-M. Dai, “A Method for Generating Random Circuits and its Application to Routability
Measurement”, ACM Symposium on Field Programmable Gate Arrays, 1996.

[DeHon99] A. DeHon, “Balancing Interconnect and Computation in a Reconfigurable Computing Array (or, why you
don’t really want 100% LUT utilization),” ACM/SIGDA International Symposium on Field-Programmable
Gate Arrays, pp 69 – 78, 1999.

[DeMicheli94] G. De Micheli, Synthesis and Optimization of Digital Circuits, New York: McGraw-Hill, Inc.
1994.

[Ebeling96] C. Ebeling, D. C. Cronquist, P. Franklin, “RaPiD – Reconfigurable Pipelined Datapath.”, Lecture
Notes in Computer Science 1142—Field-Programmable Logic: Smart Applications, New
Paradigms and Compilers, R.W. Hartenstein, M. Glesner, Eds. Springer-Verlag, Berlin, Germany,
pp. 126-135, 1996.

[Eguro00] K. Eguro, S. Hauck, “synFPGA: Application Specific FPGA Synthesis”, Northwestern University,
Dept. of ECE Technical Report, 2000.

[Eguro02] K. Eguro, RaPiD-AES: Developing an Encryption-Specific FPGA Architecture, Master’s Thesis,
University of Washington, Dept. of EE, 2002.

24

[Eguro03] K. Eguro, S. Hauck, “Issues and Approaches to Coarse-Grain Reconfigurable Architecture
Development”, IEEE Symposium on Field-Programmable Custom Computing Machines, pp. 111-
120, 2003.

[Eguro04] K, Eguro, S. Hauck, “Issues of Wirelength Cost Models in Routing-Constrained FPGAs”,
University of Washington, Dept. of EE Technical Report UWEETR-2004-0006, 2004.

[Eguro05] K. Eguro, S. Hauck, A. Sharma, “Architecture-Adaptive Range Limit Windowing for Simulated
Annealing FPGA Placement”, Design Automation Conference, 2005.

[Eguro05a] K. Eguro, S. Hauck, “Resource Allocation for Coarse Grain FPGA Development”, to appear in
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, October, 2005.

[Elixent03] Elixent, “Applications of D-Fabrix”, 2003.

[Holland04] M. Holland, S. Hauck, “Automatic Creation of Reconfigurable PALs/PLAs for SoC”,
International Conference on Field Programmable Logic and Applications, pp. 536-545, 2004.

[Holland05] M. Holland, Automatic Creation of Product-Term Based Reconfigurable Architectures for System-
on-a-Chip, Ph.D. Thesis, University of Washington, Dept. of EE, 2005.

[Holland05a] M. Holland, S. Hauck, “Automatic Creation of Domain-Specific Reconfigurable CPLDs for SoC”,
International Conference on Field Programmable Logic and Applications, 2005.

[Hutton02] M. Hutton, J. Rose and D. Corneil, “Automatic Generation of Synthetic Sequential Benchmark
Circuits”, IEEE Transactions on CAD, Vol. 21, No. 8, pp. 928-940, August 2002.

[Hutton98] M. Hutton, J. Rose, J. Grossman, and D. Corneil, “Characterization and Parameterized Generation
of Synthetic Combinational Benchmark Circuits”, IEEE Transactions on CAD, Vol. 17, No. 10,
pp. 985-996, October 1998.

[Kafafi03] N. Kafafi, K. Bozman, S.J.E. Wilton, ``Architectures and Algorithms for Synthesizable Embedded
Programmable Logic Cores'', in the ACM International Symposium on Field-Programmable Gate
Arrays, Monterey, CA, Feb 2003, pp. 1-9.

[Kouloheris91] J. Kouloheris, A. El Gamal, “FPGA Performance vs. Cell Granularity”, IEEE Custom Integrated
Circuits Conference, 1991, pp. 6.2/1-6.2/4.

[Kuon05] I. Kuon, A. Egier and J. Rose, "Design, Layout and Verification of an FPGA using Automated
Tools" ACM Symposium on FPGAs, February 2005, pp 215-226.

[LSI04] Advanced Products: Introducing LiquidLogic Embedded Programmable Logic Core,
<http://www.lsilogic.com/products/asic/advanced_products.html> (30 January 2004).

[McMurchie95] L. McMurchie, C. Ebeling, “PathFinder: A Negotiation-Based Performance-Driven Router for
FPGAs”, ACM/SIGDA Symposium on FPGAs, pp 111-117, 1995.

[NIST02] National Institute of Standards and Technology. Advanced Encryption Standard (AES)
Development Effort. Nov. 11, 2002. <http://csrc.nist.gov/encryption/aes/index2.html>.

[Padalia03] K. Padalia, R. Fung, M. Bourgeault, A. Egier, J. Rose, “Automatic transistor and physical design
of FPGA tiles from an architectural specification”, ACM/SIGDA Symposium on FPGAs, pp. 164–
172, 2003.

[Phillips01] S. Phillips, Automatic Layout of Domain Specific Reconfigurable Subsystems for System-on-a-
Chip, Master’s Thesis, Northwestern University, Dept. of ECE, 2001.

[Phillips02] S. Phillips, S. Hauck, “Automatic Layout of Domain-Specific Reconfigurable Subsystems for
System-on-a-Chip”, ACM/SIGDA Symposium on Field-Programmable Gate Arrays, pp. 165-173,
2002.

[Phillips04] S. Phillips, Automating Layout of Reconfigurable Subsystems for Systems-on-a-Chip, Ph.D.
Thesis, University of Washington, Dept. of EE, 2004.

25

[Phillips04a] S. Phillips, A. Sharma, S. Hauck, “Automating the Layout of Reconfigurable Subsystems Via
Template Reduction”, International Conference on Field Programmable Logic and Applications,
pp. 857-861, 2004.

[Phillips05] S. Phillips, S. Hauck, “Automating the Layout of Reconfigurable Subsystems Using Circuit
Generators”, IEEE Symposium on Field-Programmable Custom Computing Machines, 2005.

[Sharma01] A. Sharma, Development of a Place and Route Tool for the RaPiD Architecture, Master’s Thesis,
University of Washington, Dept. of EE, 2001.

[Sharma05] A. Sharma, Place and Route Techniques for FPGA Architecture Advancement, Ph.D. Thesis,
University of Washington, Dept. of EE, 2005.

[Sharma05a] A. Sharma, C. Ebeling, S. Hauck, “Architecture-Adaptive Routability-Driven Placement for
FPGAs”, International Conference on Field Programmable Logic and Applications, 2005.

[Sharma06] A. Sharma, S. Hauck, “Accelerating FPGA Routing Using Architecture-Adaptive A*
Techniques”, submitted to IEEE International Conference on Field Programmable Technology,
2005.

[Wilton01] S. Wilton, J. Rose, Z. Vranesic, “Structural Analysis and Generation of Synthetic Digital Circuits
with Memory”, IEEE Transactions on VLSI, Vol. 9, No. 1, pp. 223-226, February 2001.

[Xilinx04] “IBM, Xilinx shake up art of chip design with new custom product”, <http://www-
3.ibm.com/chips/news/2002/0624_xilinx.html>, (15 August 2004).

[Yan03] A. Yan, S.J.E. Wilton, ``Product Term Embedded Synthesizable Logic Cores'', IEEE International
Conference on Field-Programmable Technology, Tokyo, Japan, Dec. 2003, pp. 162-169.

