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Abstract 
FPGAs have an important role to play in System-on-a-Chip (SoC) designs by providing programmable 
hardware resources within complex ASIC designs.  However, because the FPGA logic is custom-fabricated 
with the overall SoC, we have an opportunity to optimize that logic to the SoC’s specific needs.  This gave 
rise to the Totem Project, which automates the creation of domain-specific reconfigurable logic.  In this 
paper we present the lessons learned from the Totem Project, including how best to create domain-specific 
architectures, how to instantiate that logic into silicon, and how to create CAD tools to support these 
architectures.  We also quantify how much improvement these optimizations provide over standard cells and 
tile-based FPGA logic.  Finally, we consider the role of flexibility in domain-specific reconfigurable logic, 
and present strategies on how best to provide the right amount of flexibility. 

Introduction 
Reconfigurable logic devices, in the form of FPGAs, PALs, or CPLDs, are a powerful tool in the digital designer’s 
toolbox.  With prefabricated yet electrically configurable logic, these devices provide an ideal prototyping medium 
and a cost-effective solution for low to medium volume systems.  Their flexibility and reprogrammability enable 
bug fixes, functionality upgrades, and even run-time reconfiguration techniques.  Also, as their capacity and 
performance have increased, reconfigurable devices have become capable of supporting entire complex systems in a 
single device. 

With Systems-on-a-Chip (SoCs) integrating multiple disparate functionalities onto a single piece of silicon, it is 
natural to question the future of reconfigurable logic.  Proponents of field-programmable Systems-on-a-Chip argue 
that the increasing capacity of FPGAs, coupled with the increasing costs of custom fabrication, point to the use of 
large FPGAs to implement entire systems.  However, there will always be applications with performance, power, 
density, or other requirements that simply cannot be supported in a commodity FPGA.  These systems will require 
custom fabrication, yet can still benefit from reserving some portion of the chip for reconfigurable logic.  Although 
perhaps 90% of the silicon area may be fixed logic, microprocessors, memories, or other standard logic components, 
inserting reconfigurable logic into the remaining 10% of the chip can provide the benefits of reconfigurability to 
SoC designers.  Bug fixes, in-the-field upgrades, run-time-reconfiguration, and other considerations are even more 
applicable in SoC than they have been in the System-on-a-Board methodology. 

The obvious solution is to directly use existing stand-alone reconfigurable logic structures inside SoC designs.  The 
basic tiles of an FPGA, PAL, or CPLD can be provided as a hard or soft macro to the chip designer, and directly 
fabricated into the SoC silicon.  For example, Xilinx provides some versions of their higher-end FPGA cores to 
IBM, which has embedded Xilinx reconfigurable blocks in some of its ASIC designs [Xilinx04].  Actel has created a 
generic FPGA fabric (called an embedded programmable gate array, or EPGA) that can be embedded into an SoC 
[Actel04]. The size of these VariCore EPGAs in ASIC equivalent gate densities range from 5K to 40K. 

Although translating standard commodity reconfigurable logic into IP could be an easy way to provide 
reconfigurability in SoC, it is not clear that the requirements of SoC systems and those of stand-alone reconfigurable 
logic are the same.  For example, while a commodity chip may need to support a wide variety of applications, an 
individual SoC might need reconfigurable logic only to support DSP, control logic, or some other style of circuit.  
Thus, if the reconfigurable logic were optimized to the required domain, a significantly higher-quality system might 
be possible.  There are several companies that are pursuing this option.  For example, LSI has created LiquidLogic 
[LSI04], composed of reconfigurable macro cells designed to be embedded into SoCs, as well as an input-output 
bank that interfaces with other ASIC circuitry on the SoC. The smallest reconfigurable unit in the architecture is a 4-



2 

bit ALU.  Elixent offers their D-Fabrix, which is also based on a sea-of-ALUs [Elixent03].  In the academic world, 
Wilton’s group has developed directional architectures that work well in standard cell flows [Kafafi03, Yan03]. 

Unfortunately, it is not possible to hand-tune an architecture for every possible situation.  First, the number of 
possible application domains is quite large.  Also, a single reconfigurable subsystem may be required to implement 
circuits from multiple circuit domains, greatly increasing the number of unique architectures needed.  Finally, hand-
customizing the hardware for each domain or specific SoC would increase design costs dramatically, sabotaging the 
value of domain-specific reconfigurable cores. 

In 1999 our research group asked a simple question – what if we created a system to automatically optimize 
reconfigurable logic for different SoC designs?  Can we significantly improve the quality of these systems, and if so, 
how?  These observations led to the Totem Project, an effort to automate the creation of domain-specific 
reconfigurable logic.  After 6 years and 6 theses, we can begin to answer these fundamental questions.  This paper 
represents the results of our efforts, focusing on the large-scale implications.  In this paper, instead of concentrating 
on the individual techniques and research approaches, we instead hope to show what, in our view, is crucial in the 
realm of domain-specific reconfigurable logic. 

Before we discuss the research results, we first present the overall Totem flow, breaking the domain-specific FPGA 
generation task into three major components: Architecture Generation, Layout Generation, and P&R Tool 
Generation.  We then cover our two major testbeds – RaPiD arrays, and CPLDs.  Finally, we conclude with an in-
depth discussion of the ramifications and lessons of the Totem project.  We hope that this paper provides guidance 
on how best to employ FPGAs in upcoming SoC designs, as well as a base for future research in this important field 

Totem - Creation of Domain-specific Reconfigurable Logic 

The goal of the Totem Project is to provide a complete automatic path for the creation of custom reconfigurable 
hardware, targeted for use in Systems-on-a-Chip (SoCs).  There are three primary components of the project.  The 
first is the high-level architecture generation, which determines the resource requirements and how those resources 
should be arranged.  It creates the description of both the logic blocks and the programmable interconnect.  The 
second component is the VLSI layout generator, which takes a description of the architecture from the high-level 
architecture generator and translates it into actual transistors and layout masks.  Its primary goal is to provide the 
most efficient implementation in terms of area, power, and/or performance.  The final module is the place and route 
tool generator, which creates the CAD suite for the architecture.  The resulting tools handle the mapping of user 
designs onto the programmable substrate created by the architecture and layout generators. 
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Figure 1.  Totem system flow. 
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Totem Target Technologies 
Although the generic flow from Figure 1 is applicable to the creation of almost any style of reconfigurable logic, 
different types of logic will require different algorithms for each of these steps.  So far in the Totem project we have 
focused on two different architectural styles:  RaPiD, a coarse-grained architecture developed for signal processing 
applications, and CPLDs, supporting arbitrary logic in their generic PAL/PLA blocks and crossbar interconnects.  
We discuss these testbeds and the techniques specific to each in the next sections. 

RaPiD 

The disparity between the coarse-grained nature of many computations (such as those needed for DSP), and the fine-
grained nature of traditional FPGAs, leads to inefficiencies in hardware implementations.  The RaPiD system 
[Ebeling96, Cronquist99] addresses this problem by using a very coarse-grained structure.  This style of architecture 
has specialized computational elements such as ALUs, RAMs, and multipliers, each operating on full words of data.  
The components are arranged along a one-dimensional axis, and connected by word-width routing tracks.  The 
architecture is heavily pipelined to provide very fast computations on streams of data.  While the routing flexibility 
is somewhat lower than standard FPGAs, the routing architecture complexity is also lower, reducing routing area as 
well as simplifying the routing process. 
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Figure 2.  The RaPiD datapath. 

RaPiD logic units are grouped into a basic cell, as shown in Figure 2; multiple copies can be abutted to create larger 
arrays.  The logic units within the cells operate on full words of data, and include 16-bit ALUs, 16x16 multipliers, 
16-bit wide RAM units, and 16-bit registers.  Each component contains a multiplexer on each of its inputs that 
chooses between the signals of each routing track.  Each component also has a demultiplexer on each of the outputs 
that allows the unit to directly output to any of the routing tracks.  Inputs are on the left side of a logic unit, while the 
outputs are on the right side of the unit (designated by a single vertical line for each). 

The routing architecture itself is a one-dimensional segmented design, where each track is composed of as many 
wires as the word width of the architecture (16-bits in the original implementation).  Full words of data are therefore 
communicated between the computational units of the architecture.  There are 14 routing tracks, plus one additional 
routing track that only contains "feedback" wires.  These feedback wires are only permitted to route an output of a 
unit back to one or more of the inputs of the same unit.  Additionally, a word-sized "zero" is also provided as a 
possible input to each multiplexer.  The top five routing tracks are local routing tracks, including the special 
feedback track.  These tracks contain short wires for fast short-distance communication.  The bottom ten tracks 
provide longer distance routing.  The small squares on these routing tracks are bus connectors, which allow the wire 
segments to be optionally connected to form longer wires.  Additionally, the bus connectors provide optional 
pipeline registers to mitigate the delay added through the use of longer wires and routing switches. 
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RaPiD-style architectures are an interesting testbed for the Totem approach for multiple reasons.  First, RaPiD is 
already a domain-specific architecture, optimized to signal processing applications.  Thus, this allows us to see how 
much customizing an architecture to a specific user’s needs improves over a manually domain-optimized 
architecture.  Also, the 1D nature of the interconnect simplifies some of the steps in Totem, since 2D versions of 
problems such as layout generation are more difficult to solve than 1D versions.  Finally, colleagues at U.W. had 
full-custom layouts of the architecture, a mapping flow, and benchmark designs to serve as a comparison for manual 
design and layout techniques [Ebeling96, Cronquist99]. 

In the Totem-RaPiD system we optimize both the interconnect and the logic [Compton01, Compton03, Compton06].  
For the logic blocks, we can adjust the mix of different types of logic units [Eguro03, Eguro05a], and their 
placement within the overall array.  Also, we have considered the introduction of a completely new set of basic logic 
elements optimized for private-key encryption [Eguro02].  In terms of interconnect, the optimizations determine the 
number and length of the short and long wires in the RaPiD interconnect, as well as the number and location of 
pipelining registers [Compton02, Compton03a]. 

                

Figure 3.  PAL (left) and PLA (right) structures [Biehl93]. 

CPLD 

In SoC designs we expect to dedicate a small amount of the chip area (perhaps 10%) to reconfigurable logic.  For 
board-level designs, the best reprogrammable implementation strategy for small logic functions is PALs, PLAs, and 
CPLDs.  A Programmable Array Logic (PAL) is a device optimized for implementing two-level sum-of-products 
logic equations (Figure 3 left).  The device consists of a set of arbitrary product terms (the AND gates) leading to 
fixed summation terms (the OR gates) that produce the chip’s outputs.  The product terms are logic structures that 
can be programmed to implement an AND of any combination of its inputs. 

One limitation of a PAL is that product terms cannot be shared between outputs.  Thus, if two outputs both require 
the product term   A BC , they would each need to generate the function with their own product terms.  A different 
form of PLD, called a Programmable Logic Array (PLA), allows product terms to be shared between output 
functions (Figure 3 right).  In a PLA, the AND array of product terms (the AND plane) leads to a similar OR array 
(the OR plane).  PLAs are characterized by their number of inputs, product terms, and outputs, shown numerically 
as (in-pt-out).  While PLAs have more flexibility than PALs since the connections between the AND and OR gates 
are programmable, this flexibility results in lower performance.  The performance degradation is primarily due to 
the fact that in a PLA a signal must travel through two programmable connections (one in the AND plane, one in the 
OR plane), while in a PAL the signal goes through only one programmable connection. 
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Figure 4.  CPLD structure.  The switch matrix provides configurable connectivity between the inputs, 
logic arrays, and any feedbacks from the outputs [Biehl93]. 

While the previous structures are fine for small PLDs, they may not scale to larger arrays.  Primarily, as the PLD 
gets larger, the number of connections to a given product term also grows larger, slowing down the signal 
propagation and increasing the required area.  To combat this problem, Complex Programmable Logic Devices 
(CPLDs) break the system up into several smaller product term arrays, connected together with a switch matrix 
(Figure 4).  Thus, the CPLD can be viewed as an interconnection network connecting together a collection of 
smaller PLDs.  This network can either be a full crossbar, where each output can talk to any input, or a sparse 
crossbar, which reduces the connection flexibility in order to improve area, power, and performance.  In this way, 
the CPLD can have much larger capacity than a single PLD, while keeping propagation delays low. 

In our investigations into Totem-CPLD, we have considered SRAM-programmable PALs, PLAs, and CPLDs 
[Holland05].  For the PALs and PLAs, we have created techniques for automatically removing portions of the 
programmable structure unneeded for a given set of applications [Holland04].  At the CPLD level, we consider 
adjustments to the base PLAs in the structure (by altering their number of inputs, product terms, and/or outputs), the 
number of PLAs, and the richness of the interconnect structure [Holland05a]. 

Implications of the Totem Project 
Based on our efforts in the Totem project, we believe we now have a good understanding of many issues in the 
generation of domain-specific reconfigurable logic.  In the sections that follow, we will discuss what we have 
learned, and the resulting implications for potential users of reconfigurable logic in SoC.  We will also point out 
what we feel are the right areas for future research.  We have chosen to structure this discussion as a set of questions 
and answers, concentrating on the results and implications of the Totem efforts.  For those readers interested in the 
exact algorithms and other details for the approaches, we have also included references to specific papers, theses, 
and technical reports that expand on those topics.  Overall, this section begins by considering domain-specific logic 
as a whole, then progresses through issues specific to architecture generation, layout generation, and tool generation. 

1. What is a domain? 

In the world of commodity IC’s, the concept of a “domain” is fairly straightforward.  A domain is a set of related 
computations that have similar features—similarities that allow a single commodity device or approach to efficiently 
support these computations.  A domain can be somewhat broad, such as incorporating all of signal processing.  In 



6 

this domain, most applications are high-bandwidth and compute-intensive in nature, and generally focus on word-
width computations.  However, since the domain is fairly large, a variety of resources and a flexible routing 
structure must still be provided.  Alternatively, a domain can be more specialized, where all computations within a 
domain are extremely similar, or are a subset of a larger domain.  To continue the previous example, a smaller 
domain within DSP could include only FIR filters, allowing a designer to use hardware even more optimized than 
something created for DSP in general. 

Although initially we viewed a “domain” as discussed above, after several experiments we discovered that this was 
an inaccurate, or at least incomplete, view.  The driving force of the domain definition is not always circuit 
similarity, but rather the target use of the SoC.  A “domain” is dictated by the designer of the SoC, and a domain-
specific subsystem is a subsystem that best supports those circuits the SoC designer plans to map to that subsystem.   
For one SoC, the “domain” may be “encryption protocols”, if that will be the only use of the reconfigurable logic.  
Another SoC, perhaps one intended for use in a mobile videophone, might use the reconfigurable logic to implement 
the Rijndahl encryption algorithm AND a video compression engine AND a software defined radio.  The truth is 
that “domain”, as it applies to customized reconfigurable cores, is whatever the SoC designer wants and needs it to 
be.  For restricted domains, the circuits will have many common features and the reconfigurable logic can be highly 
optimized, yet limited in what it can support.  For more generic domains, the circuits can have few common 
features, and the resulting reconfigurable logic must be more flexible and thus less highly optimized. 

2. How much better is domain-specific than domain-generic? 

There are several alternatives to domain-specific logic.  Circuits can be implemented directly in ASIC logic via a 
standard cell flow, avoiding the overhead of programmability.  Or, if reconfiguration is desired, standard FPGA tiles 
can be included on the SoC, avoiding the need to customize the logic to a specific domain.  Thus, domain-specific 
implementations are only useful if they offer a significant quality improvement over standard FPGA tiles, while 
retaining the ability to be reconfigured to handle multiple circuits. 

Table 1  Area comparison of domain-specific reconfigurable logic with other implementation 
technologies [Compton03].  Results are area in mm2.  “fail” represents cases where the domain fails to 
map to the technology, and these cases are ignored for the means at the bottom. 

 FPGA RaPiD Domain-Specific
(AMO RaPiD) 

Standard 
Cells 

cASIC 

Radar Processing 19.719 4.996 2.877 4.101 1.520 
OFDM 59.157 fail 20.800 9.168 4.574 
Digital Camera 23.006 fail 8.768 7.268 2.475 
Speech Processing 78.877 79.937 37.635 26.523 13.010 
Image Processing 19.719 fail 3.681 6.843 1.833 
FIR 26.292 6.661 3.630 2.846 2.004 
Matrix Multiplication 19.719 3.331 2.347 1.785 1.264 
Sorters 26.292 4.996 3.476 1.541 1.487 
Geo. Mean (AMO-normalized) 4.76 1.69 1.00 0.81 0.40 
Geo. Mean (Standard Cell norm) 5.90 2.20 1.24 1.00 0.50 

Our efforts on Totem-RaPiD provide insight into the area impacts of domain-specific architectures (note that we do 
not include delay because the limitations of current pipelining routers make the delay results somewhat suspect).  As 
shown in Table 1, we compare the area costs of multiple domains (each consisting of many different circuits) on 
FPGAs, RaPiDs, and standard cells, as well as two domain-specific techniques.  AMO (Add Max Once, named for 
the interconnect generation algorithm), is a technique for architecture generation that yields very flexible, yet area-
efficient, RaPiD-style domain-specific architectures.  Configurable ASIC (cASIC) produces inflexible structures 
reconfigurable only within the provided circuit set, akin to a custom datapath. 

The first things to consider are the FPGA, RaPiD, and standard cell columns.  In the standard cell process, we use 
very tight standard cell layouts and fixed interconnect wires.  As such, it provides a very dense implementation of 
circuits.  FPGAs, represented in this study by the Xilinx Virtex-II, have a much larger area because both their logic 
and routing must be programmable, though they can reuse area between different circuit mappings via 
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reconfiguration.  In our tests the FPGA solution was 5.9x larger than standard cells, representing the large costs of 
complete flexibility.  RaPiD represents a compromise of sorts between standard cells and FPGAs.  By restricting the 
interconnect and logic to support specific styles of circuits, yet retaining some programmability, the areas should 
move closer to those of standard cells.  Indeed, for those benchmarks that successfully map to RaPiD, the 
implementations are only 2.2x larger than standard cells, and 2.68x smaller than FPGAs.  However, the table also 
demonstrates that this approach comes at a cost – many of the domains considered simply do not fit onto RaPiD 
because of RaPiD’s limited interconnect.  Any fixed architecture runs the risk of not meeting the requirements of a 
given designer’s circuits. 

The column “Domain-Specific” demonstrates the advantages of optimizing the reconfigurable logic for the actual 
targeted domain specified by the SoC designer.  These implementations are significantly smaller than a fixed RaPiD, 
even though we use similar structures and interconnects, because we tailor the exact mix to the designer’s actual 
circuits.  In fact, we also are able to accommodate domains that RaPiD does not – our tools add logic and 
interconnect resources to fit the members of the domain.  Using the Totem generator, we achieve a 4.76x smaller 
implementation than that of FPGA-based tiles, and a 1.69x smaller than even a fixed domain-specific architecture 
such as RaPiD, while still ensuring that it can actually handle all of the circuits the user requires. 

When compared to the standard cell implementations, our domain-specific implementations pay merely a 1.24x area 
increase for adding programmability to their structures, instead of the 2.20x of RaPiD or the 5.90x of FPGAs.  We 
are able to approach the efficiency of a standard-cell flow partially by restricting the flexibility to what is needed by 
the actual domain, and also by using well-crafted layouts of the basic elements (similar to a macro-cell approach). 

Earlier we stated that cASICs are very limited in their configurability.  In fact, they can only be configured between 
the specific circuits used to generate the hardware.  Since they use our macrocells, and have direct point-to-point 
routing with little or no programmability, they represent an implementation close in quality to a full-custom layout.  
This style of circuit can be useful for cases where the exact circuits are known, and no additional flexibility is 
required.  In this case, a cASIC can be used in place of a series of standard-cell circuits to reduce the area required.  
However, they fail in one of the main goals of reconfigurable subsystems for SoC – the ability to handle new circuits 
that are similar to, but not exactly the same, as those the SoC designer initially provided. 

Table 2.  Area-delay product comparison of domain-specific CPLDs with domain-generic CPLDs 
[Holland05, Holland05a].  Results are normalized to the domain-specific results.  The logic unit sizes are 
given in (inputs – product terms – outputs) format at the top of the columns. 

 
Xilinx 

(36-48-16) 
El Gamal 
(10-12-4) 

PLAmap
(10-20-5) 

Domain-
Specific 

Comb 
(9-80-4) 

Seq 
(18-42-8) 

FP 
(8-18-2) 

Arith 
(7-14-2) 

Encrypt
(13-46-4) 

Combinational 13.88 13.63 5.27 1.00 1.00 9.46 5.37 4.26 4.04 
Sequential 1.84 2.47 1.96 1.00 3.46 1.00 3.81 6.04 2.05 

Floating Point 29.43 13.15 7.37 1.00 2.93 15.76 1.00 1.02 3.26 
Arithmetic 40.32 41.48 14.95 1.00 7.11 33.49 1.82 1.00 6.34 
Encryption 7.52 4.16 2.85 1.00 1.40 3.42 1.09 1.19 1.00 
Geo. Mean 11.79 9.48 5.04 1.00 2.51 7.02 2.10 1.99 2.80 

Domain-specific logic is also beneficial for CPLD-style architectures.  Table 2 shows the area-delay product of 
mapping a set of domains to both domain-specific and domain-generic architectures.  Several baselines are provided 
for comparison.  “Xilinx” represents an architecture similar to the commercial Xilinx CoolRunner devices; “El 
Gamal” is a design from a 1991 academic analysis of PLA sizings in reprogrammable architectures by Kouloheris 
and El Gamal [Kouloheris91]; “PLAmap” is a manually-designed structure based on our own initial analysis of 
running several LGSynth93 circuits through the CPLD technology mapper (PLAmap [Chen01]) used in our 
research.  The results indicate that converting from a commodity, standardized architecture to a domain-specific one 
represents an improvement of 5.04x to 11.79x in area-delay product—a huge improvement. 

One might contend that the positive results do not reflect the high quality of our solutions, but instead a poor choice 
of comparative architectures.  We therefore conducted an experiment specifically to test the benefit of domain-
specific architectures within the CPLD framework, attempting to control for other design considerations.  Circuits 
from one domain were implemented on architectures generated from different domains.  The rightmost five columns 
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of Table 2 show the results of this test.  The columns represent different generated domain-specific architectures.  
For example, mapping the Combinational domain of circuits to an architecture created for the Sequential domain 
results in an area-delay product 9.46x larger than if those circuits were mapped to the architecture generated for their 
own domain.  These results show that even controlling for the way architectures are designed, results are at least 2x 
worse when the architecture is incorrectly optimized, and thus a mismatch in architecture to domain has a significant 
cost. 

Overall we see a significant benefit from domain-specific logic.  The benefits found so far are 4.8x in area compared 
to traditional FPGA tiles for Totem-RaPiD, and 5x to 11.8x in area-delay product as compared to commodity 
CPLDs for Totem-CPLD. 

3. How do you automatically create the architecture for a domain-specific FPGA? 

Architecture generation for a domain-specific FPGA is somewhat akin to high-level synthesis for an ASIC design; 
the tools must determine what resource mix and interconnect structure will best support the desired functionality.  In 
an ASIC flow we are generally seeking the best datapath to support a single, predefined computation.  However, in 
domain-specific FPGA generation, we must instead create a datapath capable of supporting multiple circuits, but 
only a representative sample of the circuits may be available at the time of architecture creation.  Thus we must not 
only optimize based on the demands of the individual circuits, but also anticipate future designs. 

In the Totem Project we have developed architecture generation techniques for four different situations: 

1. Creation of a complete RaPiD-style datapath for a domain from scratch, including logic block selection and 
placement, as well as interconnect generation.  This was solved by placement and routing of multiple user 
designs simultaneously within a simulated annealing framework.  The resulting resource costs were directly 
modeled in the annealing cost function [Compton01, Compton02, Compton03, Compton06]. 

2. Taking a predefined RaPiD datapath and identifying which resources can be eliminated for a given domain.  
This was solved by first placing and routing circuits from the domain onto the existing datapath, and then 
iterating though a “reduction” process.  Subsequent placements and routings involved penalties on unused or 
underused resources in the architecture, thus pushing individual circuit mappings to enhance commonality of 
resource usage.  At the end, any resources unused by all input circuits can be eliminated.  This is our 
“subtractive” system [Phillips04, Phillips04a]. 

3. Generating a PAL/PLA substrate for a given domain, including eliminating individual programmable 
switchpoints in the AND and OR plane.  This was solved via a simulated annealing framework performing 
simultaneous placement of multiple user designs.  The cost function was augmented to penalize resources that 
are used by only a few benchmarks, and thus seek to increase the number of switchpoints that could be 
eliminated [Holland04, Holland05]. 

4. Creating a complete CPLD from scratch, with an emphasis on selection of the best PLA to use as a logic block 
(selection of inputs – product terms – outputs).  This was solved by making independent mapping calls to the 
PLAmap technology mapper [Chen01] and an area and delay estimator for the resulting CPLD.  We then 
evaluate each candidate architecture’s quality by aggregating the results across the full set of provided user 
designs [Holland05, Holland05a]. 

Although the individual techniques vary between different architecture styles and implementation strategies, we 
have found that the overall flow is fairly similar.  To create an efficient architecture for multiple benchmarks, first 
start with an algorithm that can create an architecture for a single benchmark.  Then augment the algorithm with a 
mechanism to aggregate the costs across multiple benchmarks, and use this to influence the mapping of each 
benchmark in the domain. 

Creation of an architecture for a single benchmark is relatively straightforward, though it varies by technology.  For 
example, the proper PAL or PLA to use for a circuit can easily be determined after logic synthesis and minimization.  
In a CPLD the task is somewhat more complex since there are multiple variables to consider (inputs, product terms, 
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and outputs of the basic PLAs, plus number of PLA blocks and sparsity of the crossbar), but simple search 
techniques involving multiple technology mapping calls can be performed [Holland05, Holland05a].  For a complete 
RaPiD datapath, we must perform placement of the individual logic units, binding of computations from the user 
designs to the physical units, and interconnect generation for the interconnect muxes, demuxes and wires 
[Compton01, Compton02, Compton03, Compton06].  These techniques are similar to standard high-level synthesis 
techniques [DeMicheli94].  However, as we will discuss in question 4 below, it is important that all created elements 
be in a relatively regular and structured pattern, or else the resulting architecture will not support circuits other than 
the original benchmarks. 

Once a tool is available to generate an architecture for a single user design, handling multiple designs simply 
requires aggregating information from architecture generation for each of those designs, and using that information 
to guide subsequent steps in architecture generation.  For example, one simple mechanism is to augment the base 
tool such that it performs single-benchmark architecture generation on all of the benchmarks simultaneously.  Then, 
as a decision is made on any part of the architecture generation, the impact on all benchmarks can be measured, and 
the proper decision made for the overall domain. 

It may not always be possible to generate an architecture for multiple user designs simultaneously.  Sometimes a 
needed tool is available only as an executable, preventing modifications to the tool’s execution; PLAmap is an 
example of this (scenario #4).  In other situations, it may be difficult to change an algorithm to directly support 
multiple mappings; this was an issue in the place & route tools for RaPiD (scenario #2).  In both cases, this was 
solved by a meta-generator that aggregated information from multiple runs of the single-circuit generator.  For 
example, to find out the best CPLD for multiple circuits, we can simply run PLAmap on each candidate architecture 
individually and aggregate the results.  For subtractive (scenario #2), we ran the placement and routing flow for each 
user design separately.  Then, we identified those resources that were used by relatively few user designs, since they 
were the most likely candidates for elimination if the design mappings were coordinated.  These resources were 
penalized, and the placement and routing flow re-run.  Through multiple iterations of this flow, the mappings of 
individual circuits were coordinated across the entire domain. 

4. How do you optimize for a domain, yet still keep flexibility to support new 
circuits? 

The simplest way to generate a new domain-specific architecture is to add exactly the resources required by a given 
user design (Figure 5).  Logic units of exactly the right operations can be placed where-ever needed, and point-to-
point wires put in place to hook together just those resources that must be connected for that design.  In this way one 
can get a reconfigurable structure very highly optimized to the circuits provided by the user; this is in fact the 
premise behind our cASIC approach (introduced in question 2 above). 

Unfortunately, an architecture so highly optimized to only a few circuits has very little chance of supporting any 
other circuits.  Even slight modifications or bug fixes on the circuits used to actually generate the architecture are 
unlikely to fit.  We refer to this as the “cASIC trap”.  While a cASIC structure may be sufficient for some uses, and 
(as shown above) can achieve higher densities than non-configurable standard cell designs, it removes most of the 
benefits of reconfigurability. 

 

Figure 5.  Example of a cASIC interconnect.  Empty circles are programmable connections, filled circles 
are fixed connections. 
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Figure 6.  Example of a flexible interconnect. 

Instead of developing architecture generation algorithms that put down individual resources, we’ve found it much 
more effective for the algorithms to instead select resources from a set of regular, flexible patterns.  For example, 
when developing a PLA as the basic logic unit for a CPLD, the tool is not allowed to select individual 
programmable switches to add or delete; the resulting structure is unlikely to support other circuits efficiently.  
Instead, the system can choose the number of inputs, outputs, and product terms for these basic elements.  In this 
way the logic elements are optimized to the needs of circuits from that domain, yet are likely to be reusable for other 
circuits.  Similarly, when creating the interconnect structure of a RaPiD device, our cASIC approach runs 
independent wires from a given source to a given destination, and only has muxes and demuxes for resources that 
must actually be connected in the input benchmarks (Figure 5).  Our flexible algorithms instead deal in complete 
tracks, with segmented wires of a uniform length and muxes and demuxes at every logic unit they traverse (Figure 
6).  Thus, the flexible tools can choose the mix of short and long tracks, and even choose the length of individual 
tracks, but the resulting interconnect is still a flexible set of resources that can support many different types of 
designs. 

Note that there is a benefit to flexible interconnect generation strategies beyond supporting many wiring patterns.  In 
a cASIC approach it is hard to add extra “spare” resources to the structure to support future larger designs.  Since 
there are no regular patterns in the structures, one cannot request “more of the same”.  However, if a domain 
requires 10 tracks of length 16 wires with bus connectors, then it is easy to determine how to add 20% more 
interconnect resources.  This issue will be considered in more depth in question 6 below. 

Creation of flexible structures does require methods for determining how to effectively space out these resources.  
For example, when we have 10 tracks filled with length 16 wires, the staggering of breaks in the channel can have 
an impact on the interconnect quality.  However, in a regular channel, these types of problems are separable, and can 
be investigated theoretically.  In this specific case, we have developed an abstract model and both optimal (in 
restricted cases) and heuristic algorithms to best place breaks in a segmented interconnect [Compton03, 
Compton03a]. 

5. Do “flexible” architectures actually achieve their goal, and how do you 
measure flexibility? 

One relatively unique requirement of a domain-specific FPGA is that it be flexible: flexible in order to handle new 
circuits not part of the initial specification, and flexible to support bug fixes and functionality upgrades.  The 
architecture generation and layout generation tools must have flexibility to automatically create FPGAs for many 
different types of needs.  Unfortunately, since flexibility is not a traditional requirement on ASIC systems, there is 
no standard way to quantify flexibility. 

If we had a large enough set of circuits from a user’s domain, testing flexibility would be simple.  We would provide 
the tools with a small sample of circuits, generate an architecture, and then see how many of the domain members fit 
onto that architecture.  However, we rarely have enough circuits for this, particularly since we want to understand 
whether a domain-specific FPGA will work for our next project, and the next project is invariably larger and more 
complex than what has been done before. 
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Our solution is synthetic circuit generation [Compton03, Compton04].  Techniques exist to take real circuits and 
automatically generate similar new circuits [Darnauer96, Hutton98, Wilton01, Hutton02].  Essentially, they profile 
the input circuit for fundamental properties such as logic mix, fanout, logic depth, etc., and use graph construction 
techniques to create new circuits with similar, though not identical, properties.  These generated circuits can then be 
used as the large set of example circuits to evaluate a domain-specific FPGA system.  Note that synthetic circuits do 
raise one danger: since the circuits are synthetic, and only mimic those properties that the synthetic circuit 
generation tool actually measures, it is possible that some unmeasured but critical feature of real circuits may be 
lost.  The solution is to generate architectures with the synthetic circuits during flexibility analysis, and to measure 
with the real designs, so that we always determine what proportion of the real circuits can be supported by a 
domain-specific FPGA. 

This approach of using synthetic circuits to generate the FPGA, and real circuits to evaluate them, does provide an 
additional opportunity.  We can manipulate the settings for the synthetic benchmark creator to check the sensitivity 
of the domain-specific FPGA generators to different parameter mismatches.  For example, the SoC designer may be 
concerned that future designs may have less locality, represented by a higher Rent exponent in their designs, and the 
domain-specific FPGA may be sensitive to this.  To test this dependence, the synthetic circuit generator can be fed 
benchmark statistics with an artificially low Rent exponent.  If architectures generated from these low Rent exponent 
circuits can support the real user designs (with the correct Rent exponent), this gives confidence that the domain-
specific FPGAs can tolerate these alterations. 

We have applied this flexibility measurement within our Totem-RaPiD effort [Compton03, Compton04] to evaluate 
our AMO RaPiD domain-specific FPGAs, which are the most flexible architectures we generate.  For single-circuit 
examples, where we create a single synthetic benchmark based on one circuit, then map the real design to the 
resulting domain-specific architecture, we have a 93.8% success rate.  When this is boosted to a full domain of 
circuits, with 5 synthetic benchmarks to control architecture generation, 99.7% of the real designs can be handled. 

One might question whether this high success rate is due to real flexibility, or just an artifact of the testing 
methodology.  To answer this, consider our GH (Greedy Histogram) technique, which was developed at the same 
time as AMO [Compton02, Compton03].  AMO evenly spread the logic units throughout the architecture, so that 
each region had the same proportion of the ALUs, multipliers, etc; GH was allowed to adjust the logic unit 
placement to better match the input benchmarks.  AMO used tracks with only powers-of-2 lengths, and smoothly 
spaced segment breaks; GH could pick arbitrary track lengths and segment breaks based on the demands of the 
benchmarks.  Thus, GH was a somewhat more cASIC-style version of AMO, using less regular interconnects and 
logic block placements to more closely match a given domain.  For single-circuit tests only 18.5% of circuits could 
be accommodated by GH-produced architectures, and for full domain testing 91.6% of circuits can be supported.  
Given that the GH approach only achieves approximately a 1% area improvement over AMO, it is clear that the 
more regular architecture construction approach is superior.  It is also clear that more regular structures provide 
much higher flexibility. 

Note that one might consider a 99.7% success rate insufficient, since if a computation cannot be mapped to the 
device it is useless.  However, these experiments are done without considering resynthesis.  In a real domain-
specific FPGA, just like a normal commodity FPGA, we can expect some initial circuit designs to fail to map.  The 
user must then restructure the design somewhat, perhaps by applying time-multiplexing, to allow it to map to the 
device.  Alternatively, as discussed in question 6 below, we can add resources to boost the range of circuits that can 
be supported on the domain-specific FPGA. 

6. What is the best way to spend extra resources to ensure future designs will 
fit? 

During the generation of a domain-specific FPGA, our goal is to create an architecture that best fits the user’s 
domain, as represented by a set of example circuits.  Architecture generation then creates as efficient an architecture 
as possible for that domain.  However, we can expect that the user will want to map other designs to this substrate, 
and these new designs will likely require more logic, routing, or other resources.  Thus, a common request from the 
SoC designer would be to add some slack to the architecture, spending extra silicon area to maximize the likelihood 
that future designs will also fit this substrate.  However, the best way to use these extra resources is unclear. 
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The answer for most standard methods for including FPGAs into SoC is “more of the same”.  The FPGA IP is 
provided as a fixed tile, comprising both logic and routing, and the designer can simply add extra tiles in order to fill 
up the area to be devoted to reconfigurable logic.  As such, we are assuming that the logic block complexity, ratio of 
interconnect to logic blocks, and connectivity pattern of the interconnect should not be varied as we include larger 
and larger arrays, and hope to support even wider ranges of circuits from a domain.  It is not obvious that this is the 
best approach.  For example, for most domains as circuits get larger their interconnect demands change, and 
emphasize more long-distance communication.  Thus, when the SoC designer has extra resources to spend, it is 
unclear how to best spend them. 

In our Totem-CPLD effort we have been able to explore this question.  Our goal was to determine the most area-
efficient strategy to add spare resources to allow future designs to fit.  To create tests, we took each domain from our 
benchmark suite, removed one or more circuits from the domain, and determined whether the architecture generated 
for the reduced domain changed from the original.  We discovered 49 cases where the base architecture was 
sensitive to a specific circuit, and used these for further testing.  We measured, for a given resource addition 
strategy, how large an area increase was required to get a given circuit to fit. 
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Figure 7.  Area increase vs. additional domain circuits supported, given different strategies for using 
extra resources [Holland05]. 

The results of this investigation are shown in Figure 7.  The horizontal axis is area increase, and the vertical is the 
number of troublesome mappings that work at the given area increase.  Note that the curve is monotonically 
increasing, since once we have enough resources to fit a given design, it will still fit as we add even more resources.  
Only sensitive scenarios are plotted here – out of the single-circuit removal scenarios tested, 62% of them created 
the same architecture when that circuit was removed.  The scenarios tested were: 

1. #PLA: Increase the number of PLAs in the CPLD.  Since the CPLD’s routing structure is a sparse crossbar, the 
interconnect resources scale up proportionally with this change. 

2. c*(in-pt-out):  Increase the size of the PLAs, in terms of inputs, product terms, and outputs, by a multiplicative 
factor.  Thus we might consider logic blocks with twice as many inputs, outputs, and product terms, and 
therefore can handle a significantly larger portion of the computation. 
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3. #PLAinputs:  Increase the number of inputs to the PLAs. 
4. #productTerms:  Increase the number of product terms in the PLAs, thus allowing more complex functions to be 

implemented. 
5. #PLAoutputs:  Increase the number of outputs from the PLAs. 

There are a couple of striking features in the graph in Figure 7.  First, some strategies are doomed to failure, since 
they will never be able to support some computations.  For example, when we just add product terms to the PLAs, 
we will never be able to support functions with wider fan-ins than the base set of circuits, since the number of inputs 
and number of PLAs doesn’t change.  This is shown by the #productTerms curve in the graph reaching a plateau.  
Similar reasoning explains why the #PLAinputs and #PLAoutputs curves also eventually stop supporting new 
circuits. 

Increasing the number of logic units – #PLA – or the capacity of each logic unit – c*(in-pt-out) – will each 
eventually support any design, once enough capacity is available.  However, it is clear that simply adding more PLA 
blocks is superior than increasing the logic block size, since the #PLAs curve generally dominates the c*(in-pt-out) 
curve.  Hybrid techniques, which scale both the logic block capacity and number of logic blocks simultaneously, 
also were not as efficient as just increasing the number of logic blocks [Holland05].  Thus, the correct answer does 
seem to be “more of the same” – we can get significant benefits in the quality of implementation by optimizing logic 
block and interconnect structures to a domain (question 2 above), but to add capacity in the most efficient manner 
you simply add more of those same resources.   

Note that this analysis held true for Totem-RaPiD as well [Compton03, Compton04] – if we used a good-quality 
architecture generator such as AMO, a new design from the domain would almost always fit if the architecture had 
enough of each type of logic unit (recall that RaPiD has multiple functional units, including ALUs, Multipliers, and 
RAM, and thus you’d need enough of each class).  If you do not have enough resources, a strategy such as time-
multiplexing or other resynthesis would be required to support the computation. 

There was one dimension other than number of logic blocks that was found to be important in Totem-CPLD: the 
sparseness of the crossbars (or hence the flexibility of the interconnect).  Our architecture generators reduce the 
number of switches in the crossbar until the base circuits just barely mapped to the array, thus saving area and delay 
in the crossbar.  However, this may not be the best answer for supporting future circuits. 
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Figure 8.  Area increase vs. additional domain circuits supported, by increasing the number of PLAs, 
given different amounts of increased switch densities in the sparse crossbars. [Holland05]. 

Figure 8 is similar to the graph of Figure 7, showing troublesome circuits mapped vs. the area increase in the 
architecture.  All curves use the strategy of simply adding more functional units (#PLA from Figure 7), but each 
curve considers a different base crossbar richness.  Specifically, the +0% curve uses the minimum number of 
switches in the crossbars, while +N% increases the switches per crossbar by N% over the minimum.  As can be 
seen, the +0% and +5% curves are comparable.  While the +0% curve performs somewhat better than the +5% line 
in some cases, in others it is even more significantly worse than the +5% line.  Although the minimum switch 
density is sufficient for the base circuits, it can be too brittle to effectively handle some other designs.  Note that to 
get +0% to work at all for some circuits we have to depopulate some of the PLAs, telling the technology mapper to 
under-pack the PLAs to allow additional flexibility in the router [Holland05].  The curve for +5% is almost always 
better than all other curves that add capacity, and is significantly less fragile (and thus often more effective) than the 
+0% curve.  Thus, we believe that adding a small amount of additional flexibility to the interconnect structures is 
worthwhile, and all Totem-CPLD tests in Figure 7 use +5%.  Although we did not find a similar effect in Totem-
RaPiD, we believe this is actually inherent in our flexible tool flows.  Specifically, our AMO architecture generator 
actually performs routing during architecture generation, though with an inferior (but fast) left-edge-algorithm 
heuristic [Compton02, Compton03].  The more powerful Pathfinder algorithm performs the final mapping of circuits 
to the generated architecture.  Thus, we suspect that picking resources to meet the needs of a weak router, yet 
mapping designs with a high-quality router, may automatically add a sufficient margin of extra flexibility into the 
interconnect. 

7. Do architectures need to support the worst-case resource demands across a 
domain? 

One difficult problem in creating a domain-specific FPGA is balancing the resource requirements of different user 
designs, particularly when we consider the variable domains possible within an SoC.  That is, if the “domain” 
consists of very different circuits with very different computation styles, the types and quantities of resources 
required can vary significantly from circuit to circuit.  If the reconfigurable logic must be manufactured with the 



15 

worst-case resource demands across all circuits, this can yield an unacceptable architecture; unacceptably large, 
slow, and power-hungry. 

In terms of logic functionality, it is often possible to rein in excessive resource requirements from any one circuit via 
logic resynthesis, often involving time-multiplexing.  For example, a highly parallel implementation of the Frog 
encryption algorithm can produce a new value every two cycles, but requires 64 RAM blocks.  Reducing the 
throughput to a value every 8 cycles reduces the memory requirements to 16 RAM blocks, and a value every 32 
cycles requires 8 RAM blocks.  By carefully considering different implementations of each design, and balancing 
resource requirements across the entire domain, we can create efficient architectures [Eguro02, Eguro03, Eguro05a]. 

Unfortunately, a similar approach may not be possible for the interconnect resources.  For example, consider a 
domain of four circuits that require an interconnect channel width of 8, 9, 9, and 16 respectively.  We might want to 
choose a consensus channel width of perhaps 9.  For the interconnect-heavy circuit, we might hope to spread the 
circuit across a much larger architecture, thus spreading out the interconnect demands and reducing the per-channel 
requirements.  However, such spreading is not generally considered in existing mapping tools [Betz97], which will 
ignore limited interconnect resources and instead tightly cluster the circuit, resulting in a routing failure [Eguro04].  
While there are some mapping algorithms that can support congestion-aware placement and routing [Sharma01, 
Eguro05, Sharma05, Sharma05a], it is important to realize that the CAD tool flow that targets the domain-specific 
arrays has assumptions that may limit how well resource demands can be reduced or balanced. 

8. What role do fixed functional units play in a domain-specific architecture? 

One of the attractions of domain-specific FPGAs is the ability to include complex fixed-function units appropriate to 
the specific domain.  This can radically improve the area, power, and performance of those portions of the 
computation that map to these units.  In a sense this is the concept behind the original RaPiD architecture, utilizing 
only ALUs, multipliers, and memories to implement complete DSP applications. 

To investigate the roles of complex functional units in domain-specific FPGAs, we developed RaPiD-AES 
[Eguro02], a RaPiD-style architecture with logic units optimized to private-key encryption.  We began by carefully 
examining all of the 15 original candidates for the Advanced Encryption Standard competition (AES) [NIST02], to 
identify the types of operations they perform.  We then grouped the operations together into basic functional units 
optimized to compute exactly these functions; these functional units would then be the basic units within the RaPiD-
AES structure.  The units we created were: 

• Multiplexer:  32-bit, 2:1 muxes for computation and time-multiplexing support. 
• ALU: Addition, subtraction, XOR, AND, OR, NOT, etc. 
• Rotate/Shift Unit:  32-bit variable shifter with left/right rotate/logical shift/arithmetic shift. 
• Permutation Unit:  32x32:1 statically controlled muxes, providing arbitrary connection from input to output 

bits. 
• RAM:  256 byte memory addressable as eight 4 to 4 lookup tables (each with 4 pages of memory), eight 6 to 4 

lookup tables, or one 8 to 8 lookup table. 
• 32-bit Multiplier:  32-bit integer multiplication with 64-bit output. 
• SIMD Multiplier:  4x8-bit modulus 256 integer multiplications or 4x8-bit Galois Field multiplications. 

With these fixed functional units, we were able to efficiently implement all of the computations found in the entire 
AES domain, including the original circuits as well as circuit modifications made as the competition progressed.  
Unfortunately, RaPiD-AES was a complete failure.  After VLSI layout of all of the units, creation of a new compiler 
flow to target the device, and implementation of all AES algorithms in RaPiD-C, the domain-specific results were 
significantly worse in area-delay product compared to Verilog implementations we mapped to standard Xilinx 
FPGAs.  Although some of this was due to the relative skill differences in layout between a world-class FPGA 
company and a bunch of undergraduate and graduate students, we believe much of the penalty is due to inherent 
challenges with fixed functional units within reprogrammable devices: 

• Although a fixed functional unit may be significantly more efficient than generic FPGA units such as look-up 
tables (LUTs) for a given computation, overall they may be a loss.  For example, if our shifter unit was 10x 
more efficient than LUTs for a rotation, but were less than 10% utilized across the domain of circuits, they 
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result in a net area loss.  Note that such low utilizations are due not just to some circuits not using the resource 
at all, but also from circuits that only use a small portion of the provided fixed functional units. 

• Even when fixed functional units are used, their placement in the architecture imposes a penalty.  Specifically, 
an architecture generator will generally disperse these units throughout the architecture to support many 
different usage patterns.  However, individual units will likely have more clustered unit usage dictated by the 
overall computation.  Thus, we can expect significantly higher interconnect usage to route signals to where 
those units actually appear in the architecture, costing both area and delay.  Also, logic that doesn’t use the fixed 
functional units will also have increased routing costs since their signals must be routed past those unused units. 

Both of these problems can be summed up in a single word: fragmentation.  Fixed functional units break up the 
architecture into areas of differing functionalities, and the resulting fragmentation of their usage can impose 
significant area and performance penalties. 

While fragmentation doomed our RaPiD-AES efforts, we still believe there is a role for fixed functional units in 
domain-specific FPGAs; the best indication of this is the increasing inclusion of such units into commodity FPGAs.  
Commercial architectures now have carry chains, RAM blocks, multipliers, and even complete microprocessors 
embedded into their fabric.  Commodity FPGAs also point the way towards how to use these resources.  
Specifically, instead of attempting to support an entire computation with a set of fixed functional units, we instead 
start with an overall flexible FPGA fabric and then add fixed functions as they prove beneficial.  Those that provide 
a definite advantage can be included, while other computations can remain in LUTs, thus avoiding unnecessary 
fragmentation of resources. 

With this methodology of “flexible-first”, even for beneficial units we may add a much smaller quantity of each unit 
than individual benchmarks may desire.  For example, one design may want 90 multipliers within the fabric.  
However, if most other domain members need only 10 multipliers each, the most efficient solution is likely to be to 
only include those 10 multipliers, and map the remaining 80 multipliers from the worst-case design into the LUTs of 
the programmable fabric.  This concept was not available to us within our RaPiD-AES effort, since there was no 
fully flexible unit as a fallback.  Although we were able to reduce worst-case resource demands somewhat by time-
multiplexing (discussed in question 7 above), this still was not sufficient. 

9. How do you create the layout for a domain-specific FPGA? 

Once architecture generation has completed, we must somehow create an implementation of that architecture.  At 
this point, the reconfigurable logic is expressed as a circuit, and can be implemented like any other.  The only 
difference from a normal design is that this circuit contains programming bits to control various features in the array, 
and these programming bits will be fabricated along with the rest of the design.  Thus, the circuit remains 
reprogrammable, and once fabricated can be configured to implement whatever domain members are desired. 

The simplest method for layout generation is to feed the architecture description directly into a standard cell flow.  
This technique will be able to support any architecture desired, and is compatible with an overall SoC flow.  Note 
that this can be important, since if the rest of the design is in standard cells, the inclusion of another implementation 
style may be counter-productive.  However, standard cell systems can have difficulty implementing FPGA 
hardware.  Specifically, to a standard cell system an FPGA appears to be a huge set of combinational cycles, since 
there is generally an unregistered path between each gate of the design, including a path back to itself.  Standard cell 
systems can have significant problems with combinational cycles, particularly in connection with timing 
optimization.  One solution is to create directional FPGAs, architectures without combinational cycles [Kafafi03, 
Yan03].  Alternatively, a custom standard cell system can be developed to implement FPGAs [Padalia03, Kuon05]; 
this can also take advantage of FPGA-specific optimizations based on the regularity of FPGA tiles, and the 
interchangeability of programming bits. 

Better implementations than basic standard cells are possible.  An FPGA is composed of relatively few basic 
elements: multiplexers, programming bits, tristate drivers, basic switches, and D-flip-flops.  Thus, it pays to have as 
optimized an implementation of these basic blocks as possible. We have found [Phillips01, Phillips02] that 
significant benefits can be obtained by adding hand-crafted standard cells to a standard cell library to support the 
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FPGA’s exact needs.  For example, in implementing RaPiD architectures the addition of five FPGA-specific 
standard cells yields an area only 0.83x the size of a version using normal standard cells. 
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Figure 9.  Floorplan of CPLD circuit generator structures (left) and the resulting layout (right) 
[Holland05]. 

We can not only custom develop FPGA-specific standard cells, but can also automatically create full-custom 
layouts.  Consider a structure such as RaPiD, where complex – but regular – functional units are combined together 
to create an entire programmable device.  In this case, we can develop a circuit generator to instantiate each 
individual element [Phillips04, Phillips05] parameterized based on possible architecture generator optimizations, 
similar to a datapath compiler.  Then, by abutting these basic elements together we can create a complete 
reconfigurable array.  Similarly, our circuit generator for CPLDs [Holland05, Holland05a] creates an overall design 
by abutting simple, parameterized elements (Figure 9).  Note that circuit generators restrict the optimizations 
available to the architecture generator, since each hardware unit’s generator will have some limitations on the types 
of elements it will create.  For example, an ALU generator might be parameterized to different bit-widths, but might 
not be able to implement a hard-coded incrementer. 
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Figure 10.  Abstract representation of template reduction.  The initial architecture (left) is reduced by 
eliminating unneeded resources (center), and then compacted (right). 

A final option is to leverage premade, full-custom FPGAs, yet still optimize the architecture to a specific domain.  In 
template reduction [Phillips04, Phillips04a], architecture generation is restricted to use a common template that 
represents a superset of all possible allowed resources.  The architecture generator selects a subset of those resources 
to form a domain-specific architecture.  A highly optimized layout for the common template can be used as a 
starting point for layout generation, which simply removes whatever resources are not used by the generated 
architecture (Figure 10).  This directly improves performance and power, since capacitance and leakage currents are 
reduced, and layout compaction can improve the layout’s area.  While this technique benefits from an initial full-
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custom layout, the downside is that architecture generation can never add new styles of resources.  Also, the 
template reduction operations can be complex to implement and are often tied to a specific fabrication process. 
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Figure 11.  Area comparison of different layout generation techniques [Phillips04]. 

In order to compare all four layout generation techniques (Standard Cells, Standard Cells with FPGA-specific cells, 
Circuit Generators, and Template Reduction) we implemented all four techniques within a RaPiD flow [Phillips04].  
Figure 11 shows an area comparison of these techniques.  The vertical axis is area, normalized to the size of a full-
custom RaPiD architecture implementation of that benchmark.  The horizontal axis sorts the benchmarks based on 
utilization of the RaPiD architecture – designs that use relatively few of the resources provided by the standard 
architecture are likely to benefit the most from automatically customized domain-specific arrays.  The graph 
demonstrates several key issues.  First, the standard cell flow is 2.5x worse than the full-custom, fixed RaPiD 
architecture for designs that use most of RaPiD’s resources, but as the designs deviate more significantly the 
standard cell flows approach or even surpass full-custom, though fixed, designs.  Second, the circuit generator and 
template reduction flows achieve roughly the same results, providing approximately a factor of 2 improvement over 
full-custom, fixed reconfigurable architectures. 

10. When can you apply full-custom layout techniques instead of just standard 
cells? 

As discussed in 9 above, significant quality improvements are possible if we utilize a more aggressive layout 
approach than just vanilla standard cells.  However, using such an approach may not be appropriate in all 
circumstances.  For example, consider the advice to implement custom FPGA-specific standard cells.  Although it 
provides a modest area improvement, each standard cell created is likely to be specific to a given fabrication 
process, since design rules vary from process to process.  Thus, we either create a single set of additional standard 
cells, locking in the reconfigurable logic to a single process, or we must spend significant effort creating new 
libraries for most/all technologies, since commercial libraries for a new technology likely do not have the “right” 
cells. 

For template reduction and circuit generators, there are greater concerns than just locking in to a given fabrication 
process.  By using these technologies we restrict the type of optimizations that are useful during architecture 
generation.  For example, in a circuit generator approach each generator makes assumptions on the overall structure, 
and set of possible optimizations, in order to create an efficient implementation.  The generator for an ALU within a 
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RaPiD structure may assume that the I/O connections come from the left and right, and the height of all units in the 
architecture will be the same in order to “pitch-match” these connections.  Thus, an architecture generator 
transforming an ALU to reduce its height may simply not be supported.  Template reduction may allow the 
architecture generator to remove subcomponents of the ALU, since individual transistors and connections can be 
deleted in a straightforward manner.  However, since the neighboring units may not be reduced in the same way, 
compaction will be unable to reduce the overall area because of cross-constraints. 
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Figure 12.  CPLD layout augmented with the scaling dimensions.  Some constants are not shown on the 
dimensions for simplicity. 

We have found that an automatically generated reconfigurable system’s full-custom layout generally has a set of 
“scaling dimensions”, features of a layout that scale with properties.  For example, the height of a RaPiD 
architecture is dictated by the bitwidth of the computations, and the width based on the set of operations included.  
For a CPLD, the component areas are dependent on the number of PLA inputs, outputs, and product terms, as well 
as the number of PLAs in the CPLD.  This is shown in Figure 12.  An architecture generator can alter these features 
almost at will and the layout will adjust automatically.  However, if the architecture generator makes an optimization 
that is not fully aligned with a “scaling dimension” the layout generator may not be able to efficiently support that 
transformation.  For example, in the CPLD if we choose to take one PLA and decrease its number of product terms 
by half, there will be no improvement in the layout area, since the height of the other PLAs will still dictate the 
overall layout dimensions.  This change may improve performance or power, but even these are limited by the 
inability to restructure the layout. 
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Figure 13.  Example of a PLA with switches eliminated [Holland04, Holland05]. 

Before we realized the importance of scaling dimensions, we developed a PAL and PLA generator that reduces the 
number of connections in the array by placing product terms with similar connection patterns from different circuits 
into the same position [Holland04, Holland05].  This system was able to eliminate 66% to 74% of the programmable 
connections from a PAL or PLA, with a delay improvement of 16% to 31%.  Unfortunately, there were no area 
improvements from this technique, for reasons apparent in the resulting layout shown in Figure 13.  Notice that 
although the central arrays are relatively lightly populated, there is little a compaction algorithm can actually do with 
this layout.  For example, through either direct adjacencies or by touching corners, a path of programmable elements 
can be found through the entire width and height of the PLA.  Thus, when we invoked a compactor on this array, no 
benefit was found.  For a system such as this, a standard cell implementation might be preferred, since with the area 
overhead of perhaps 2x (assuming PLA-specific cells), but an elimination of almost 75% of the logic elements, a net 
area benefit will likely be achieved. 

Note that if the layout generator is specifically designed to minimize cross-constraints, some irregularities in layouts 
can be supported.  For example, to support sparse crossbars as interconnect matrixes within a CPLD, we knew that 
perhaps only 20% of the crossbar positions would be populated.  Thus, our basic crossbar switchpoint was designed 
to easily slide vertically in the array, with vertical routing to connect the switchpoint to the appropriate horizontal 
wire, and with very tight packing of horizontal wires.  However, these alterations may come at a price; reducing 
cross-constraints may require greater area or circuit delay. 

The main conclusion is that if we expect to use a full-custom layout generator such as template reduction or circuit 
generators, the architecture generator and layout generator tools must be coupled.  The layout generator must be 
designed to support the optimizations included in the architecture generator, and the architecture generator can only 
create architectures that the layout generator can efficiently implement.  This is of particular concern in 2D 
architectures such as standard island-style FPGAs; in an island-style FPGA the size of a routing channel must be 
fixed for the channel running the entire length or width of the array, and the switchboxes (locations where vertical 
and horizontal tracks are cross-connected) may impose a coupling between the sizes of the vertical and horizontal 
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channels.  Thus, the types of optimizations available may be significantly restricted.  In RaPiD and in CPLDs, there 
are many more scaling dimensions available, since many of the features are independent. 

11. How do you provide a CAD suite for mapping user designs onto automatically 
generated domain-specific FPGAs? 

A domain-specific reconfigurable system is useless unless there is a corresponding toolsuite to map user designs 
onto this substrate.  While an architecture generator will generally map the initial user designs to the architecture as 
it is created, the SoC user will inevitably want to map new designs to the array, either to handle new functionality, or 
for bug fixes on the initial circuits. 

Several steps in the mapping process for domain-specific logic are easy to support.  For synthesis and technology 
mapping, the logic inside a domain-specific device is usually chosen from a set of standard styles of units, units that 
are supported by existing tools.  Thus, our tool to generate a customized RaPiD will choose the number of ALUs 
and Multipliers, but will not alter the type of units included.  For CPLDs, the system can choose the number of 
inputs, outputs, and product terms for the PLAs.  However, existing mapping tools for PLAs such as PLAmap 
[Chen01] already allow the mapping to be parameterized based on these factors. 

Routing is also easy to support.  The main routing algorithm for FPGAs, Pathfinder [McMurchie95], is already 
architecture-adaptive; a new architecture is modeled by a routing graph and given to Pathfinder, which automatically 
maps to this interconnect structure. 

Placement is much harder.  Placement algorithms are generally tied directly to the underlying FPGA architecture by 
the tool’s interconnect estimator used to calculate the placement cost.  Specifically, placement is really the process 
of assigning logic computations to FPGA logic blocks in order to improve the resulting routing.  Most current 
placement algorithms, including the prevalent academic placer in VPR [Betz97], abstract the routing problem into a 
fast estimator, which makes assumptions on the features of the interconnect.  If the generated architecture matches 
these assumptions, the placement algorithm will still work.  Thus, the VPR placer can be used for island-style 
architectures with abundant routing resources and homogeneous routing channels.  For RaPiD, our placer can handle 
any resource mix and channel capacity (including highly congested channels), as long as the channel width is 
constant across the array [Sharma01]. 

Unfortunately, many architecture modifications will not conform to the assumptions of an existing architecture-
dependent placer.  For example, as discussed in question 7 above, we might develop an island-style architecture with 
a channel width dictated by the typical, not worst-case, requirement across the circuits of the domain.  This would 
boost the overall system quality.  However, this violates the assumptions in VPR, which cannot handle congested 
channels. 

A solution we have explored is to eliminate heuristic routing estimates.  Specifically, if the goal of placement is to 
facilitate a high-quality routing, then the router itself can be used to estimate routeability.  Since Pathfinder is 
architecture-adaptive, we can make calls to Pathfinder during placement to estimate the quality of a given 
placement.  Note that complete routings are not necessary for each placement, since a placer normally makes a 
series of small perturbations to an existing placement, and thus requires only slight perturbations to the routing as 
well.  The runtime penalties for this technique are significant, but since we expect these domain-specific 
reconfigurable systems to only occupy a small portion of a System-on-a-Chip, this does help limit the size (and thus 
runtime) of the placement approach.  We have developed an architecture-adaptive placer called Independence 
[Eguro05, Sharma05, Sharma05a, Sharma05b], which achieves similar or better results that architecture-specific 
tools on a wide range of architecture types, including VPR/island-style, tree-based HSRA [DeHon99], and RaPiD. 

Future Work 

In our efforts since 1999 we have been able to answer many of the questions surrounding automatic generation of 
domain-specific FPGAs.  However, there is still much left to do.  Perhaps the biggest open question is how these 
results track to different FPGA styles.  We chose to focus on RaPiD because of local expertise and collaboration 
with Carl Ebeling’s group, the simplifications possible from using a 1D structure, and the use of complex functional 
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units.  This meant many questions could be quickly answered within the RaPiD structure.  Similarly, our CPLD 
work was motivated both by the ability to explore an architecture that is quite different than RaPiD, but is still very 
flexible, and has an interesting interconnection structure.  Also, the simplicity of the mapping flow to PLAs/PALs 
meant that interactions with synthesis could be considered. 

However, the major growth area in reconfigurable logic is in island-style, 2D architectures, and it is likely that such 
architectures will form a significant portion of the commercial market for reconfigurable logic in SoC.  Whether 
island-style architectures will exhibit the same characteristics as the ones studied here is a major open question.  We 
believe they will, except that the layout constraints of scaling dimensions (question 10 above) will have an even 
greater restriction on architecture generators that target aggressive layout styles such as template reduction and 
circuit generators. 

A second major open question is logic synthesis support.  While synthesis interactions were a major consideration in 
Totem-CPLD, resynthesis of troublesome designs requires careful consideration. At times, one circuit in a domain 
will have features disproportionate to the other circuits within the domain. If this circuit is used in architecture 
generation, it can distort the resulting architecture. If the circuit is not used in architecture generation, it may not fit 
on the previously-generated architecture.  For both of these cases, the circuit should be resynthesized to limit the 
impact of its excessive resource requirements.  For example, a tool to automatically time-multiplex designs would 
be invaluable.  Our efforts to time-multiplex encryption circuits by hand for RaPiD-AES clearly demonstrated the 
advantage of (and need for) this approach. 

A final issue is the need for accurate quality metrics for domain-specific FPGA creation systems.  We made 
extensive investigations into area and flexibility, and some considerations of performance.  However, studies of the 
power implications of these systems will be very useful.  While we believe the power improvements will track 
somewhere between the area and performance improvements, this should still be explored.  Also, our performance 
studies have been somewhat simplistic.  Although we alter circuit structures in ways that decrease capacitance, and 
thus improve performance, we do not currently have mechanisms to change transistor sizings in response to these 
changes. 

Conclusions 

It seems clear that SoC design flows will by necessity incorporate reconfigurable logic..  While the continuing 
increase of fabrication costs decreases the number of new ASIC starts, it also demands that each ASIC actually 
produced be capable of being used in a large number of systems.  Reconfigurable logic provides a mechanism to 
adjust the hardware to support a wide range of computations with a single chip, as well as a way to reduce the 
likelihood of fatal design errors.  These features make reconfigurable logic a natural choice for SoC design 

While current commercial ventures are seeking to exploit this opportunity by deploying premade IP tiles that can be 
tiled to form NxM arrays, they miss a huge opportunity: customizing the reconfigurable logic to the specific needs 
of the target SoC.  As we have demonstrated, this optimization yields 5x improvements in area and up to 11x in 
area-delay product compared to standard reconfigurable systems.  In some cases these implementations even rival 
those of fixed ASIC solutions.  The creation of these architectures, layouts, and CAD tools are quite manageable, 
though care must be taken in the architecture/layout coupling.  Architectures must support efficient routing 
estimators or be prepared to use significantly slower placement approaches.  Finally, by using regular, flexible 
structures and carefully adding spare resources, these systems exhibit excellent flexibility to support new or 
upgraded circuits developed after chip fabrication. 
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